
Cross-Language Differential Testing of JSON Parsers
Jonas Möller

1,2
, Felix Weißberg

1
, Lukas Pirch

1
, Thorsten Eisenhofer

1
, Konrad Rieck

1,2,3

1
Technische Universität Berlin

2
Berlin Institute for the Foundations of Learning and Data (BIFOLD)

3
Technische Universität Wien

ABSTRACT

JSON is a widely used format for representing data on the Internet.

Unfortunately, the format is imprecisely specified, which poses the

risk of confusion and ambiguity when processing sensitive data.

While previous work has focused on manual analysis of parsers,

an automatic analysis of the interplay of multiple parsers result-

ing from this imprecision has received little attention so far. In

this paper, we address this problem and propose a framework for

differential testing of JSON parsers tailored towards discovering

semantic discrepancies. To spot these differences automatically, we

overcome two challenges: First, we introduce a consensus-based

normalization of JSON that enables us to analyze data semantics

in absence of a precise specification. Second, we propose a novel

mechanism for tracking test coverage across runtime environments,

so that confusions between parsers written in C, C++, Rust, Java,

and Python can be detected simultaneously. In a comparative analy-

sis of 22 JSON parsers, we uncover various semantic discrepancies,

ranging from minor inconsistencies in the representation of num-

bers and strings to severe confusions in the handling of object keys

and values. We illustrate the security impact of these discrepancies

in different case studies, echoing recent efforts to enforce a stricter

specification for JSON in security applications.
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1 INTRODUCTION

JavaScript Object Notation, or JSON for short, has become a main-

stay for the serialization and transmission of information. While

the format has been originally developed for web content only, it

has since become one of the most frequently used data exchange
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formats alongside XML. Due to this widespread use, many pro-

gramming languages have been extended to include JSON parsers

in their standard libraries, such as Java and Python. Similarly, the

JSON format has been adopted as a general data representation in

modern security protocols, like JWT [21] and OAuth2 [18]. As a

result of this development, a plethora of implementations for JSON

has emerged, covering different runtime environments and focus-

ing on varying aspects, such as performance, portability, usability

or memory requirements.

Unfortunately, the JSON specification lacks precision and is rid-

dled with ambiguity, providing only vague guidance for parser

development [25, 32]. Although the format appears lightweight and

simple at first glance, implementing parsers that behave identically

under all possible inputs is a hard problem. Hence, when passing

data across multiple parsers, such as in a distributed service, we

cannot ensure that they interpret semantics in the same way. For

example, the parsers may disagree on the precision of numbers,

the encoding of strings, or even the keys contained in an object.

Such confusions are not just a minor annoyance, but pose a serious

security problem once JSON is employed in security-critical applica-

tions, as discussed by Seriot [32] and Miller [25]. A notable example

of such an issue is CVE-2017-12635 [6] which allows remote code

execution due to the different interpretation of the same input data

by multiple JSON parsers.

Previous security research has tackled this problem by designing

methods for localizing defects in individual parser implementations

and libraries. While this work has helped reduce the attack surface

of JSON, methods for uncovering confusions and discrepancies be-
tween parsers have not be explored so far. In this paper, we bridge

this gap by introducing Crossy, an automated framework designed

to identify semantic differences in JSON parsers. In contrast to pre-

vious research, our framework allows us to analyze multiple parsers

simultaneously and identify discrepancies in their implementations

that would not surface in their individual analysis.

Technically, our framework is based on the concept of differen-
tial testing [24], in which implementations of one specification are

exposed to identical inputs and monitored for differences. In par-

ticular, we build on coverage-guided differential testing. However,

analyzing JSON comes with unique challenges in this setting: First,

without a precise specification, it is hard to reason about the seman-

tics implemented by different parsers. To tackle this challenge, we

propose a consensus-based normalization, where the interpretation

of JSON is determined by the “common sense” of multiple parsers.

Second, we take the wide variety of JSON implementations into

account and develop a mechanism to track coverage across runtime

environments. This allows us to identify discrepancies between

parsers written in different programming languages.

Based on our framework Crossy, we conduct a comparative

analysis of 22 popular JSON parsers, covering five programming

https://doi.org/10.1145/3634737.3657003
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languages (C, C++, Rust, Java, and Python) and three runtime envi-

ronments (native, Java interpreter, Python interpreter). We observe

that discrepancies are far from rare and that our framework is

constantly uncovering new cases where parsers disagree on the

interpretation of inputs. By systematizing these findings, we can

identify classes of confusions ranging from minor misinterpreta-

tions of numbers and strings to erroneous handling of object keys

and values. The latter cases in particular pose serious security prob-

lems, as we show in corresponding case studies.

Our analysis provides an expanded view on JSON security. While

developing a robust parser is a challenge in itself, our investigation

shows that the interplay of multiple parsers creates further attack

surface that can only be uncovered through differential testing

and that is hard to mitigate without a rigid specification. Conse-

quently, we advocate for more stringent guidelines for the JSON

format, in line with recent initiatives supporting standards, such as

I-JSON [11] and related schemes [31].

In summary, we make the following contributions in this work:

(1) Differential testing for JSON. We propose the first frame-

work for differential testing of JSON, suitable for identifying

semantic discrepancies across parsers automatically.

(2) Normalized and cross-language analysis.Our framework

compensates for the lack of precise specification and jointly

searches for differences across runtime environments.

(3) Large-scale analysis of parsers. We analyze 22 popular

JSON parsers and discover inconsistencies in their inter-

pretation of data, ranging from subtle differences to severe

security problems.

Roadmap. We introduce our framework Crossy in Section 2 and

discuss its implementation in Section 3. Our comparative analysis

of JSON parsers is presented in Section 4. We consider limitations

and related work in Section 5 and Section 6, respectively. Finally,

Section 7 concludes the paper.

2 THE CROSSY FRAMEWORK

The JSON standard defines a simple and intuitive grammar that

specifies the form of valid JSON objects. On closer inspection, how-

ever, the specification containsmanyminor ambiguities and degrees

of freedom. Even if a JSON parser meticulously adheres to the stan-

dard, interoperability problems between parsers can hardly be ruled

out. To illustrate this issue, let us investigate a simple JSON object

and its potential semantic interpretations.

[ 12345678901234567 ] −→


[ 12345678901234567 ]

[ 1.234567890123457e16 ]

[ 4294967296 ]

The object contains a large integer number. Depending on the

implementation of the parser, this number may be interpreted as

given, converted into a floating point number with loss of precision

or even truncated to a 32-bit integer value. It is already evident from

this simple example that semantic discrepancies between parsers

pose a notable risk in security-critical applications.

The goal of our analysis is thus to systematically uncover these

ambiguities and determine the “common ground” on which current

JSON parsers agree and where they diverge. To this end, we intro-

duce Crossy, a framework that simultaneously analyzes parsers

and automatically detects differences in their understanding of

identical data. A natural concept for realizing this analysis is dif-
ferential testing [24]. Given two parser implementations 𝑝 and 𝑝

for a specification, the testing aims to find an input 𝑥 where the

implementations disagree, that is, 𝑝 (𝑥) ≠ 𝑝 (𝑥). In our setting, 𝑝

and 𝑝 are JSON parsers and we are interested in finding a valid
JSON object 𝑥 that results in diverging interpretations.

As the basis for our framework, we build on the differential test-

ing approach by Petsios et al. [29]. The approach generates inputs

using a guided fuzzer that maximizes the execution diversity be-

tween parsers. For this purpose, the fuzzer tracks the code coverage

of inputs across parsers and aims to uncover new combinations of

code regions. However, two challenges hinder the application of

this approach that need to be overcome for finding differences in

JSON parsers:

C1 Cross-language testing. JSON parsers are written in several

programming languages, such as C, Python, and Java. Un-

covering differences between these parsers requires tracking

code coverage across runtime environments, which is not

possible with existing approaches.

C2 JSON normalization. The lack of a precise specification ren-

ders it difficult to compare data representations and locate

disagreements. To account for this, we normalize JSON using

a consensus-based method that distills the “common sense”

of all parsers under test.

C3 Difference analysis. Not all differences inherently reflect se-

curity issues. We therefore introduce a taxonomy derived

from the JSON grammar that supports the manual analysis

of discrepancies and can be gradually extended to categorize

findings of Crossy.

Technically, our framework Crossy consists of two major stages.

The fuzzing stage as shown in Figure 1 operates in a loop consisting

of four steps: the input generation ❶, a filtering of uninteresting

inputs ❷, a consensus-based difference detection ❸ and a logging

mechanism for later analysis ❹. It is complemented by the anal-

ysis stage shown in Figure 2, which first gathers the outputs of

different parsers ❺, from which normalized parse trees are gener-

ated❻. Functional differences are then categorized by the difference

location in the respective parse tree ❼.

In the following sections, we introduce the main components of

this framework, that is, the cross-language differential testing and

the consensus-based normalization. For a general introduction to

differential testing we refer to the works of McKeeman [24] and

Petsios et al. [29].

2.1 Cross-Language Differential Testing

Due to the increasing prevalence of JSON in practice, correspond-

ing parsers are now available for various programming languages.

Hence, semantic discrepancies cannot only occur between parsers

but also across different runtime environments of these languages.

For example, a server may process a JSON object in the Python

interpreter and send it to a web browser, which analyzes it with
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Figure 1: The fuzzing stage. The fuzzer generates inputs and pro-

vides them to a set of targets. The outputs are passed to a consensus-

based detector to find differences.

a C++ parser. This cross-language transfer is not limited to net-

work applications and can also take place on the same host, for

example, when two processes with different runtime environments

communicate with each other. This crossing of environments poses

a challenge for differential testing, as code coverage in the parsers

is language-dependent and thus not directly accessible.

While a simple solution like binary instrumentation [e.g., 2, 30]

can be applied to all runtime environments, for interpreted lan-

guages we would merely track the states of their virtual machine.

The interesting aspects of the execution—the control flow on pro-

gramming language level—would still remain opaque. Similarly,

there exist approaches for tracking coverage on the language level,

such as fuzzing frameworks like Atheris for Python [1] and Jazzer

for Java [3]. Yet, these approaches only monitor a single environ-

ment and cannot be generalized to cross-language targets.

As a remedy, we introduce a new method for cross-language

tracking of code coverage in Crossy. The core idea is to monitor

the visiting of control-flow edges across all runtime environments

in a shared memory map. For interpreted languages, the runtime

environments are instrumented at the language level so that they

do not report coverage of the underlying virtual machines. As a

consequence, the guided fuzzer in Crossy can operate a single map

of coverage, guiding the construction of new inputs depending on

all parsers simultaneously.

2.2 Semantic Normalization

The second challenge in realizing differential testing for JSON is

the definition of semantic discrepancies. While for security-critical

applications, such as cryptographic libraries, often a diverging exit

code already indicates a problem, for JSON we require a more

detailed analysis to spot semantic disagreement.

Ideally, we would like to compare the internal representation

that each parser extracts from a provided input. However, because

each parser uses different data structures for holding this internal

state, a direct comparison is technically not feasible. Instead, we

take advantage of the fact that most JSON parsers provide functions

to serialize their internal representation back into the JSON format.

That is, during testing each parser receives a JSON object as input

and returns its interpretation as serialization of its internal state.

By comparing this output, we can test parsing libraries at a more

detailed level than just examining the exit codes.

Formally, we thus model a parser 𝑝 as a function that maps one

JSON object to another,

𝑝 : J ↦→ J , 𝑝 (𝑥) → 𝑠 (𝑟𝑥 )

where J is the domain of valid JSON data, 𝑠 a serialization func-

tion and 𝑟𝑥 the internal representation of the parser. Note that we

exclude invalid JSON from our analysis, as corresponding defects

can be determined with regular testing strategies.

However, a simple serialization of the internal representation is

not sufficient because of syntactic variance, such as Unicode equiv-

alence (e.g., "\u000a" vs. "\n"). In other words, there exist multiple

syntactic correct strings that can represent the same semantic in-

formation. A further hindrance in interpreting these objects is the

prevalence of implementation-defined freedoms (e.g. precision and

range of numbers) and ambiguities (e.g. unordered and duplicate

keys). For example, the following two JSON objects are syntactically

different, yet semantically equivalent:

{"a":1, "\u0062":2} ≡ {"b":2, "\u0061":1}

Since we only want to recognize semantic differences, we have

to normalize serialized JSON objects so that their equivalence is

visible to our framework.

Direct normalization. Ideally, there would exist a normalization

function that transforms JSON objects into a canonical representa-

tion which resolves syntactic differences. As a naive approach, we

could use one of the parsers itself as a normalizer and apply it to

the outputs of all other parsers. However, by committing to only

one parser, all defects of this parser would become part of the nor-

malization and could not be detected by our framework. Moreover,

a faulty parser could transform a valid input into an invalid one and

vice versa. Therefore, direct normalization is a chicken-or-the-egg

problem that requires an error-free parser to begin with and hence

is practically infeasible.

Consensus-based detection. Instead of relying on a single parser,

we thus propose to use an ensemble of parsers to create a “common

sense” of JSON semantics. In this setting, errors of any single parser

do not matter for the result as the respective parser gets outvoted

by the remaining parsers. This is in line with the results by Harrand

et al. [19] who found that resilience against JSON parsing errors is

improved by a multi-version architectures [9].

More formally, let us consider a set of parsers 𝑃 , each taking a

string 𝑥 representing valid JSON as input and returning a serializa-

tion of its internal state as output. Starting from the naive approach,

we can simply select one of the parsers 𝑝 ∈ 𝑃 and use it to normalize

the output of the other ones. That is, we calculate𝑦 𝑗 = 𝑝 (𝑝 𝑗 (𝑥)) for
each 𝑝 𝑗 ∈ 𝑃 . If all parsers are semantically equivalent, the normal-

ized outputs 𝑦 𝑗 are identical, otherwise a discrepancy is detected.
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We describe the discovery of such a discrepancy using 𝑝 by

𝛿 (𝑝, 𝑥) =
{

1 if not all 𝑦 𝑗 are identical

0 otherwise.

(1)

Since committing to a single normalization parser 𝑝 would jeop-

ardize our analysis, however, we instead use a group of multiple

parsers 𝑃 ∈ P(𝑃) where P denotes the power set. The decision of

the group of parsers for a given input is now given by a majority

voting on each of the normalization parsers’ decision:

Δ(𝑃, 𝑥) =
{

1
1

|𝑃 |
∑
𝑝∈𝑃 𝛿 (𝑝, 𝑥) > 1

2

0 otherwise.
(2)

This approach is inspired by fault-tolerant systems, where a

group of potentially faulty components can make a robust decision

by considering their consensus rather than individual results. Thus,

given the imprecise specification of JSON, we distill the “common

sense” from 𝑃 instead of trusting each parser alone. While our

approach cannot rule out wrong decisions in general, the probability

of overlooking a semantic discrepancy decreases with the size and

quality of the parsers in the 𝑃 .

Round-robin detection. The error tolerance of our consensus-

based detection of discrepancies comes at a price: The runtime

overhead during fuzzing increases linearly with the size of 𝑃 , so that

we need to trade-off performance with correctness. Fortunately, we

can leverage an observation made during our tests to significantly

reduce the overhead of our detection approach.

A semantic difference between two parsers is often triggered by

several inputs. For example, diverging interpretations of numbers

manifest in a large number of reported discrepancies. Consequently,

false negatives are less relevant in our framework as the same error

is triggered repeatedly during testing. Hence, we can optimize our

detection strategy: For each input, we follow the naive approach of

using a single parser for normalization. This parser is selected with

the round-robin method from 𝑃 and thus provides only one opinion

of the ensemble. If this opinion indicates a potential difference,

we confirm this decision with the entire ensemble by a majority

vote. Otherwise, we proceed and assume that a missed difference is

detected later if another parser is selected for normalization. This

simple approach provides three advantages:

(1) Each non-difference input only needs to be processed once,

independent of the size of 𝑃 .

(2) The round-robin method prevents the system from commit-

ting to a single parser for normalization.

(3) All detected discrepancies are confirmed by the ensemble,

so that errors only occur if its majority errs.

2.3 Difference Analysis

At the end of the testing run, we receive a set of valid JSON inputs

that cause differing behavior in parsers according to our consensus-

based detection. In the next step, we aim to further analyze the

differences in terms of their root-cause. With this analysis we can

determine different behavior of JSON parsers, faulty behavior by

individual parsers, and classify differences by their severity. To this

end, we compare the outputs of the JSON parsers on a syntactic

and semantic level. We create two normalized parse trees for each

  "id": 1,
  "bug." : 2

5

6

7

Differences

obj

{ {

  "id": 1,
  "bug." : 2

id bug.

1 2

{ {   "id": 1{ {

obj

id bug.

1 2

Figure 2: The analysis stage. For each input in our difference

corpus, we do a pair-wise comparison by first constructing two

parse trees and then traversing the nodes simultaneously.

pair of parsers and recursively compare each element in the trees.

To avoid generating a tree with faulty elements, we employ a JSON

parser for this task that agrees with the employed parser ensemble

and hence interprets the objects as the majority.

Parse tree traversal. At its core, the JSON grammar consists

of seven JSON values: object, array, number, string, "true",
"false", and "null". While the last three of these are trivial to

compare, the other elements come with their own semantics which

need to be incorporated for explaining discovered discrepancies.

Hence, during the parse tree traversal, we first identify the element

type and then employ the following comparison strategy.

(1) Objects.As objects consists of name/value pairs, two objects

are equal if the number of name/value pairs match and the

set of names/value pairs are equal. This results in a recursive

comparison since we need to compare the names using string

comparison and the associated values using the respective

type comparisons.

(2) Arrays. Similarly, two arrays are equal if they contain the

same number of values, the values are equal according to

their respective type comparison, and the values’ order is

identical between the arrays.

(3) Numbers. In JSON, the number concept includes both inte-

ger and floating point representation. While the numbers 1

and 1.0 have the same numeric value, their types could differ

in languages like C. Additionally, the JSON specification re-

frains from defining clear ranges and precisions for numbers

and only suggests adherence to IEEE 754 binary64 [7]. To

compare two numbers, we examine whether the number is

an integer or a floating point number and then compare it

based on their respective value.
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(4) Strings. JSON strings consist of Unicode characters, which

as of RFC 8259 [12], have to be encoded in UTF-8 outside of

closed systems. To check the equality of two strings, they are

compared on a code unit by code unit basis. Unicode charac-

ters in the Basic Multilingual Plane (BMP) can additionally

be encoded as a six character sequence, the “\u escapement

notation”. For example, the Unicode character U+0061 for

an a, can be encoded as "\u0061". Characters outside of the

BMP can be encoded with a 12-character sequence using

the UTF-16 surrogate pair. Lastly, some characters can be

encoded using a two character encoding, e.g., "\n", "\t".

3 IMPLEMENTATION

We implement Crossy on top of libFuzzer [5]. Our method of col-

lecting cross-language coverage, however, is independent of the

underlying fuzzer, as it only requires mechanisms for inter-process

communication (IPC) and the availability of coverage information

in the target language. In this section, we provide further imple-

mentation details of Crossy and discuss important design decisions

of our framework. We make our source code publicly available at

https://github.com/j-moeller/crossy.

3.1 Cross-Language Coverage

In general, we can distinguish between two types of target lan-

guages: in-process target languages (i.e., C, C++, and Rust) and

inter-process target languages (i.e., Python and Java). While the for-

mer languages can be compiled and incorporated directly into our

main fuzzing process, the latter are based on virtual machines and

require a separate process for execution. In our implementation,

we communicate with theses processes via pipes for control flow

and shared memory for data exchange. The coverage is collected

in the main fuzzing process in a bitmap which is provided to the

non-native languages via memory-mapped shared memory.

Overall, our cross-language coverage-guidance is target language

agnostic: if the respective target can be fuzzed by a “regular” fuzzer

at the language level and provides methods for inter-process com-

munication, it can be fuzzed by Crossy.

In-process targets. By using in-process targets, fuzzing perfor-

mance is improved as IPC and process synchronization mechanisms

are avoided. Similar to Petsios et al. [29], we compile each target to

shared objects and load them via dlopen to prevent name collisions.

Upon loading an instrumented shared object, the reserved memory

for coverage is registered via callbacks with the libFuzzer part of

our implementation.

C/C++. For C/C++, instrumentation is added via LLVM’s Sanitizer-

Coverage using the -fsanitize-coverage parameter. To reduce

the number of instrumented edges for larger libraries, we addi-

tionally utilize -fsanitize-coverage-allowlist to focus on the

JSON modules.

Rust. Rust is compatible with C/C++ applications. It can be compiled

with LLVM’s -fsanitize-coverage parameter as well and also

loaded as a shared object. However, the Rust compiler currently

does not support targeted instrumentation via an allowlistwhich
increases the number of instrumented edges.

Inter-process targets. The inter-process targets are initialized as

persistent processes at the start of the fuzzing phase. These set up

the communication with the main fuzzing process via pipes and

memory-mapped shared memory. During fuzzing, the inter-process

communication with the targets follows a simple protocol that aims

at minimizing the communication overhead: Each target waits for

input to become available from a pipe. After the input has been

processed by the parser, the output and coverage information are

written to shared memory. Finally, the process signals the end of

its execution to the main process via an eight byte write to a pipe.

Overall, this results in an IPC overhead of two syscalls (one read,

one write) and writes to memory-mapped shared memory.

Python. While Python’s C API provides means to start an in-process

Python interpreter, we explicitly decided against this solution be-

cause the API only supports one interpreter per process. Although

a single interpreter could potentially increase the performance, all

Python libraries under test would have to share a common state

which could, potentially, lead to interference between them. We

therefore opted for a multi-process solution with isolated Python

interpreters. For the instrumentation, we use a modified Atheris [1]

which rewrites Python bytecode to trace edge coverage.

Java. We build a wrapper application using the Java Native Inter-

face that is started from the fuzzing process. The application then

initializes the IPC mechanisms to communicate with the fuzzer,

launches the Java virtual machine containing the target program,

and writes coverage information to shared memory after each run.

The instrumentation is based on a modified version of Jazzer [3].

Because of implementation details of the Java instrumentation, we

can only give an estimate of instrumented edges to the next largest

power of two.

3.2 Measuring 𝛿-Diversity

Conceptually, Crossy is an extension of the Nezha framework

proposed by Petsios et al. [29] and also employs the concept of

path 𝛿-diversity on top of code coverage. Nezha realizes efficient

differential testing by monitoring behavioral asymmetries between

programs. Instead of concatenating the coverage information and

dismissing the inherent difference between programs, Nezha de-

fines a metric called path 𝛿-diversity which examines the combi-
nation of the targets’ coverage information. Since keeping track of

all combinations encountered during a fuzzing run would exceed

memory capabilities,Nezha defines two variants of path 𝛿-diversity

to approximate the true metric. The coarse version only keeps track

of the combinations of the numbers of covered edges, while the

fine metric monitors the combinations of the sets of covered edges.

Since Nezha’s implementation is based on an older version of lib-

Fuzzer, we re-implemented the concept for a newer version and

incorporated it into our framework.

4 ANALYSIS

Equipped with the proposed Crossy framework, we continue to

analyze JSON parsers across different programming languages and

runtime environments. Our main objective is the identification and

systematization of discrepancies among parsers.

https://github.com/j-moeller/crossy
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Table 1: Overview of parsers. The set 𝑃 of JSON parsers used in

our experiment. The calibrated ensemble 𝑃+ is listed in bold.

Parser (Github projects) Language Edges Exec/s

rustyrussell/ccan C 622 54 732

DaveGamble/cJSON C 958 27 379

cesanta/frozen C 695 9866

akheron/jansson C 1527 19 062

zserge/jsmn C 221 64 433

json-c/json-c C 1560 12 818

json-parser/json-parser C 621 50 489

sheredom/json.h C 849 87 110

vincenthz/libjson C 256 60 931

pocoproject/poco C 7405 8894

lloyd/yajl C 960 56 015

boostorg/boost C++ 6142 37 684

open-source-parsers/jsoncpp C++ 4667 4095

nlohmann/json C++ 2800 18 208

mozilla/gecko-dev C++ 7324 33 536

Tencent/rapidjson C++ 815 53 896

v8/v8 C++ 3764 26 683

google/gson Java ≈ 4096 18 341

FasterXML/jackson Java ≈ 65 536 13 466

json (stdlib) Python 440 49 943

simplejson/simplejson Python 788 51 762

serde-rs/json Rust 24 254 7373

Therefore, we select 22 popular parsers, covering five program-

ming languages (C, C++, Rust, Java, and Python) and three runtime

environments (native, Java interpreter, Python interpreter). We find

a notable number of differences between parsers which we group

into eight bug classes in the following analysis. Our results indicate

that most pairs of parsers suffer from at least one bug class and

there exists only two groups of parsers that behave equivalent.

4.1 Setup

Before discussing our findings in detail, we first need to define

the target set of parsers 𝑃 , collect our initial corpus, and filter the

representative subset 𝑃+ used for the consensus-based detection.

Parser selection. For our analysis, we select 22 popular JSON

parsers, which are listed in Table 1. As basis for our selection, we

use the parsers listed at json.org and filter according to the (a)

programming language, (b) popularity (i.e., GitHub stars), and (c)

whether the parser is still actively being developed.

For Java, we select gson from Google and jackson which is a well-

known library for data serialization formats in Java. For Python, we

choose the standard library’s parser and simplejson. Note, that other
popular options such as ultrajson, orjson, and yajl-py only provide

Python bindings to parsers written in low-level languages. For Rust,

we select serde JSON. For C, we select 11 parser which differ in their

design, performance and targeted application. For example, cJSON
is build for ease-of-use, jsmn is optimized for performance, and

frozen is build for usage in embedded systems. For C++, we include

parsers from popular browsers, i.e., v8 (Chrome) and spidermonkey
(Firefox; gecko-dev), as well as rapidjson from Tencent and the

well-known boost project.
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Figure 3: Consensus subgroup. Fraction of candidates that agree

with the full ensemble as a function of the fuzzers run-time.

Fuzzing corpus. To bootstrap the fuzzing process, we need an

initial corpus of JSON files. This corpus should include a diverse

set of inputs used as a starting point for the fuzzer. Therefore, we

use test cases that are specifically crafted to test the correctness

of the JSON parsers. In particular, we browse through the parsers’

repositories in our test-bed and collect a total of 566 distinct JSON

files from eight different repositories.

Calibrated ensemble. As discussed in Section 2.2, using the entire

ensemble of parsers 𝑃 for the consensus-based detection would

impose a significant performance burden. Therefore, we substitute

this ensemble with a smaller, representative group 𝑃+ that captures

the behavior of the complete set as best as possible.

In particular, we determine this calibrated ensemble by minimiz-

ing the following optimization problem

𝑃+ = arg min

𝑃∈P(𝑃 )
E𝑥 [Δ(𝑃, 𝑥) − Δ(𝑃, 𝑥)] , (3)

where 𝑥 denotes valid JSON inputs from a set𝑋 of JSON objects, the

decision of the ensemble Δ(𝑃, 𝑥), and the decision of a candidate

group Δ(𝑃, 𝑥). Simply put, we seek an ensemble whose majority

decisions are as close as possible to the majority decisions of all

considered parsers. For our analysis, we choose a group size of

|𝑃 | = 3 as a trade-off between expressiveness and overhead. This

results in a total of

(
22

3

)
= 1540 possible groups.

To find a calibrated ensemble from this set, we conduct a calibra-

tion run for 8 hours with 96 fuzzing instances on a shared corpus

to collect diverse set of inputs 𝑋 . Subsequently, for each of these

inputs, we compute the decision Δ(𝑃, 𝑥) of the full ensemble as well

as the decisions Δ(𝑃, 𝑥) of each candidate. In Figure 3, we show the

number candidate groups that agree with the full ensemble as a

function of the fuzzers run-time. Around 50% of combinations are

ruled out after a few minutes of fuzzing and the number of candi-

dates saturates after around 4 hours at 38%. From the remaining set,

we choose 𝑃+ = {jsmn, json.h, libjson} as the group with the highest

executions per second (see Table 1).

json.org
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Figure 4: Path 𝛿-diversity. The two path 𝛿-diversity coverage

metrics defined by Petsios et al. [29] during the testing run.

4.2 Bug Class Taxonomy

For our main experiment, we run Crossy for 24 hours with the full

set 𝑃 of 22 parsers and 𝑃+ = {jsmn, json.h, libjson} for the consensus-
based normalization. We employ 96 parallel instances that work on

a shared corpus.

Coverage. We observe a saturation of coverage in the individual

parsers after around ten minutes. This is expected: JSON parsers are

relatively simple programs and the high quality test samples in the

initial corpus already covermost of the program space. However, the

path 𝛿-diversity, which is specifically designed for use in differential

tests, continues to increases afterwards as shown in Figure 4. This

confirms the findings by Petsios et al. [29] that path 𝛿-diversity

coverage is well suited for differential testing.

Bug classes. Over the entire fuzzing run, Crossy collects a total set

of 29 266 unique JSON inputs that lead to different behavior between

parsers. Following the methodology introduced in Section 2.3, we

create a normalized parse tree for each of these inputs. As the

inputs caused a semantic discrepancy, there must be at least one

conflicting node in the corresponding tree that can be uncovered

through a traversal. Therefore, to categorize inputs into bug classes,

we traverse all nodes for a given input and categorize the bug

according to the identified type of node where the difference occurs.

Taxonomy of differences. Based on the identified bug classes, we

construct a taxonomy describing their relationship. Recall that the

JSON grammar defines seven fundamental values from which we

use object, array, number, and string to construct this taxonomy.

This initial grammar-based nodes are shown as solid in Figure 5. For

brevity, we only include nodes for which we found discrepancies.

As such we exclude primitive values of null, true, and false.
Starting from major type differences, we manually analyze the

uncovered inconsistencies in the inputs and extend the grammar

by adding more refined bug classes. On the first level these include

semantic properties as discussed in Section 2.3. For objects, we

include name error and length error which are violations of the

set of object names or the length of the object respectively. These

are further differentiated into errors from individual parsers. For

numbers, we include the distinction between integers and floating

point numbers. Depending on the type, if the values of the number

differ, we assign either an integer error or a float error. If
the values differ within a margin of error, we assign the more fine-

grained precision error. Some parsers unexpectedly cast from

integer to float which we denote by type error.

Parsing error. There are two bug classes not listed in the taxonomy.

These stem from the fact that either one or both JSON parsers might

transform valid into invalid JSON, from which we can not build a

parse tree to analyze. We treat these cases as two additional bug

classes: Parse error and Parse error both.

Interoperability matrix. Based on the bold printed nodes from

Figure 5, we construct an interoperability matrix between all pairs

of parsers in Figure 6. The rows and columns contain the parsers

whose output we compare, and the cell represents the amount

of bug classes this pair is susceptible to. The diagonal, naturally,

consists of only zero entries since each parser returns the same

output as itself. This representation provides a condensed view

on our analysis and indicates the alarming number of differences

between the considered parsers.

Incompatibility between parser. Most of the parsers exhibit at least

one incompatibility with another parser. Although the bug classes

do not always constitute a serious problem, the prevalence of the

incompatibilities come at a surprise given the rather low complexity

of the JSON standard. json-parser stands out from all other parsers

as it exhibits the highest incompatibility with all other parsers.

Object

Grammar-based Fuzzing-based

Empty key

Trailing dot

Null value

Null value

Unicode key

Trailing parens.

Trailing dot

Empty key

Length error

Name error

Array

String Unicode error

Number Precision errorFloat error

Integer error

Type error

Figure 5: Bug class taxonomy. For our taxonomy, we differentiate

between grammar-based nodes and more fine-grained nodes found

empirically during fuzzing. We denote the nodes that we use as

basis of our analysis in bold.
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Table 2: Invalid encoding handling. We differentiate four differ-

ent cases: “u” denotes the case that the parser outputs the character

in “\u escapement notation”. “x” denotes the case that the parser

outputs the raw character. “T” denotes the parser returning a valid

JSON object with a truncated string. “/” denotes an invalid JSON

object resulting from a truncated string. And an underscore “_” de-

notes a parsing error. Error cases are highlighted in red. Critical

cases are denoted in bold.
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0x00 _ T _ _ _ _ _ u u

0x01 _ u _ x u x x u u

. . .

0x07 _ u _ x u x x u u

0x08 _ u _ x u u u u u

0x09 _ u _ x u u _ u u

0x0a _ u _ x u u _ u u

0x0b _ u _ x u x x u u

0x0c _ u _ x u u u u u

0x0d _ u _ x u u _ u u

0x0e _ u _ x u x x u u

. . .

0x1f _ u _ x u x x u u

"\u0000" _ T _ u u / / u u

"\u0001" u u u u u x x u u

. . .

"\u0007" u u u u u x x u u

"\u0008" u u u u u u u u u

"\u0009" u u u u u u u u u

"\u000a" u u u u u u u u u

"\u000b" u u u u u x x u u

"\u000c" u u u u u u u u u

"\u000d" u u u u u u u u u

"\u000e" u u u u u x x u u

. . .

"\u001e" u u u u u x x u u

"\u001f" x u u u u x x u u

Intra-/ and inter-language. One could expect parsers from the same

language to be more compatible or exhibit the same behavior (e.g.,

because there are common pitfalls when handling Unicode charac-

ters). However, we find that the language does not seem to influence

the compatibility. Neither intra-language nor inter-language incom-

patibilities show any significant differences.

Groups of parsers. We find two clusters of parsers to be completely

compatible with each other: The first group is an array of cross-

languages parsers: (C) jansson, jsmn, json-c, libjson, yajl and (C++)

jsoncpp, nlohmann and (Java) jackson. The second one contains v8
and spidermonkey. Both of these stem from JavaScript engines for

which compatibility is particularly important.

4.3 Case studies

We continue to discuss selected bugs that we discovered during

our analysis. These semantic inconsistencies serve as examples of

how parsers can arrive at different interpretations and how such

inconsistencies can impact security.

Omission of null values. The unusual yet documented default

behavior of the parser gson is to remove name/value pairs in JSON

objects where the value is null, that is, the input {"key": null}

is serialized back to {}. This behavior is also shared by the Java

parser fastjson, which is deprecated at the time of writing so it is

not considered in our analysis [19].

{"key": null} → {}

Although removing a member whose value is null seems like a

logical step, it might lead to unexpected behavior if subsequent

steps rely on the presence of the member. In a security context, for

example, the absence of a specific key in an object may trigger the

loading of a default, potentially insecure value.

Unexpected type coercion. The JSON specification defines the

“number” concept without a clear differentiation between integers

and floating point numbers. For example, given an integer number

without decimal point, most implementations return the exact same

integer representation. The gson parser, however, always returns a

floating point number (i.e., a number containing a decimal point).

Also, semantic inconsistencies may arise when numeric values

are crossing the boundaries of internal types for representation.

If numbers exceed such a range, some parsers use type coercion

to transform the integer into a floating point approximation. The

parsers frozen, jsmn, json.h, libjson, yajl, jackson, py-json, and sim-
plejson return the original number without modification whereas

cJSON , jansson, and poco do not return any output for large num-

bers. Interestingly, for very large numbers (> 10
100

) gson no longer

returns a float, but a string representation of the whole number.

These differences become security-critical when large numbers

are used for authentication, for example, as session identifiers or

timestamps, and therefore minor changes can invalidate a running

session and trigger re-authentication.

Parsing of control characters. The JSON specification requires

control characters (U+0000 through U+001F) to be in “\u escapement

notation” in strings. If control characters are included as bytes,

parsers should reject the input as it does not conform to the JSON

grammar. However, there are several parsers that accept inputs con-

taining control characters (cJSON , jsmn, json-c, json-parser , json.h,
jsoncpp, gson), effectively ignoring this aspect of the specification.

The concrete parsing behavior is shown in the upper half of Ta-

ble 2. This is an unexpected result: the parsers not only suffer from

the imprecise specification, but even build further ambiguities into

their implementations, thus weakening their interoperability. Ob-

viously, inconsistent representation of strings can have serious

consequences for security, for example, when they are used to

match login names and permissions.

Invalid control characters serialization. Related to this, a seri-

alization function should not output control character bytes as this

results in invalid JSON. This is especially problematic when control
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ccan 0 4 6 5 5 5 7 6 5 5 5 5 5 5 5 4 4 5 5 5 6 5

cjson 4 0 6 4 4 4 6 5 4 4 4 4 4 4 4 4 4 4 4 5 5 4

frozen 6 6 0 2 2 2 6 2 2 3 2 4 2 2 4 4 4 4 2 3 3 5

jansson 5 4 2 0 0 0 5 1 0 1 0 2 0 0 2 2 2 2 0 1 1 3

jsmn 5 4 2 0 0 0 5 1 0 1 0 2 0 0 2 2 2 2 0 1 1 3

json-c 5 4 2 0 0 0 5 1 0 1 0 2 0 0 2 2 2 2 0 1 1 3

json-parser 7 6 6 5 5 5 0 4 5 5 5 5 5 5 5 6 6 6 5 6 6 5

jsonh 6 5 2 1 1 1 4 0 1 2 1 3 1 1 3 3 3 3 1 2 2 4

libjson 5 4 2 0 0 0 5 1 0 1 0 2 0 0 2 2 2 2 0 1 1 3

poco 5 4 3 1 1 1 5 2 1 0 1 3 1 1 3 2 2 2 1 2 2 3

yajl 5 4 2 0 0 0 5 1 0 1 0 2 0 0 2 2 2 2 0 1 1 3

boost 5 4 4 2 2 2 5 3 2 3 2 0 2 2 2 4 4 4 2 3 3 3

nlohmann 5 4 2 0 0 0 5 1 0 1 0 2 0 0 2 2 2 2 0 1 1 3

jsoncpp 5 4 2 0 0 0 5 1 0 1 0 2 0 0 2 2 2 2 0 1 1 3

rapidjson 5 4 4 2 2 2 5 3 2 3 2 2 2 2 0 4 4 4 2 3 3 3

spidermonkey 4 4 4 2 2 2 6 3 2 2 2 4 2 2 4 0 0 2 2 3 3 4

v8 4 4 4 2 2 2 6 3 2 2 2 4 2 2 4 0 0 2 2 3 3 4

gson 5 4 4 2 2 2 6 3 2 2 2 4 2 2 4 2 2 0 2 3 3 4

jackson 5 4 2 0 0 0 5 1 0 1 0 2 0 0 2 2 2 2 0 1 1 3

py-json 5 5 3 1 1 1 6 2 1 2 1 3 1 1 3 3 3 3 1 0 1 4

simplejson 6 5 3 1 1 1 6 2 1 2 1 3 1 1 3 3 3 3 1 1 0 4

serde 5 4 5 3 3 3 5 4 3 3 3 3 3 3 3 4 4 4 3 4 4 0

Figure 6: Interoperability matrix. Each cell displays the number of unique output difference classes between the parser pairs.

characters in “\u escapement notation” are serialized to bytes, be-

cause this transforms a former valid JSON string into invalid JSON.

The faulty serialization behavior is marked with an “x” in Table 2.

Interestingly, we found one case where this error manifests even

for a single parser: ccan becomes self-incompatible as "\u001f" is

serialized to 0x1f which ccan itself can not parse again. Affected

parsers: ccan, jsmn, json-parser , json.h.

["\u001f"] → [ 0x1f ]

By transforming valid into invalid JSON, the parser breaks a

core integrity assumption about the data. If subsequent systems

rely on the validity of the output of the parsers, this might lead to

unexpected behavior or crash the application.

Invalid handling of UTF-16 surrogate pairs. Unicode charac-

ters not in the Basic Multilingual Plane are encoded using the

12-character escape sequence. We found json-parser to incorrectly

handle these codes, e.g., the string "\uDBFF\uDFFF" is serialized back

to 0xf3 0xbf 0xbf 0xbf instead of 0xf4 0x8f 0xbf 0xbf.

Invalid handling of U+0000. In languages containing null ter-

minated strings, the null character indicates the end of a string.

This leads to problems when parsing JSON. If a valid JSON string

contains the null character in “\u escapement notation”, ccan and

jansson do not parse the string. For cJSON the documented behavior

is to return a string that is truncated after the null character. The

parsers json-parser and json.h truncate the entire JSON object after

the null character which leads to an invalid output.

["Visible\u0000Hidden"] → ["Visible"]

Truncating the string after the null character in “\u escapement

notation” breaks the integrity of the data. For example, in a setting

where the parser is used in a component that validates incoming

data, malicious data can be appended behind the null character to

bypass validation.

Invalid handling of names. The frozen parser exhibits faulty

behavior that allows an attacker to manipulate the JSON object

which has been assigned the CVE ID “CVE-2023-48891” [8]. This

undermines the integrity of the JSON processing as data might be

removed, the JSON structure might be manipulated, or the resulting

string might be made invalid. The behavior occurs for name/value

pairs in JSON objects where the name is empty or ends in a pe-

riod (“.”). The resulting output depends on the corresponding value’s

type of the affected member:

(1) If the value is a primitive type (i.e., number, string, boolean,

null), the entry is removed from the object. For example

the input {"key.": 10} is transformed to {}. If subsequent

parsers depend on the presence of the member this might

lead to unexpected behavior.

{"key.": 10} → {}

(2) If the value is an array, the values of the array are added

to the parent JSON object. Because this can never result



ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Möller et al.

in a valid member, the resulting output is always invalid

JSON, i.e., valid JSON can be turned into invalid JSON. As an

example, the input {"key.": [1,2,3]} will be serialized to

the invalid JSON output {1,2,3}. This behavior makes frozen
self-incompatible as it can not be applied to its own output.

{"key.": [1,2,3]} → {1,2,3}

(3) The last configuration is the most critical. If the correspond-

ing value is an object, the object is integrated into its parent

object, e.g., the input {"key.": {"admin": true}} results in

the output {"admin": true}. If an attacker has control over

the name in the member, it is possible to modify the structure

of the resulting JSON string. If the attacker can additionally

control the nested JSON object, it is possible to rewrite the

parent JSON object.

{"key.": {"admin": true}} → {"admin": true}

Similarly, for entries in JSON objects where the key ends in

“]”, the values get integrated into the parent JSON object. This is

equivalent to the behavior where the name ends in a period and

the value is an array. As an example, the input {"key]": [1,2,3]}

gets serialized to {[1,2,3]}.

{"key]": [1,2,3]} → {[1,2,3]}

5 LIMITATIONS

Our approach to differential testing of JSON parsers is based on

different assumptions and naturally entails limitations, which we

discuss below.

Independent execution. Since our implementation of Crossy is

build on libFuzzer, we inherit the assumption that the executions

of targets are independent of each other, that is, an input always

triggers the same functionality and produces the same result. For

JSON parsers in our experiments, we believe this to be a reasonable

assumption, as these consume data in one go and do not rely on a

streaming state that could disrupt subsequent inputs. To track cross-

language coverage, we further make the assumption that targets do

not fork to execute subprocesses or call into lower-level languages.

Incorrect normalization. Our method for normalizing JSON is

based on the consensus of an ensemble of parsers. Although the

realized combination of majority and round-robin voting greatly

reduces the probability of error, we cannot rule out that the nor-

malization works correctly in all possible cases. In particular, if

the majority of the ensemble errs, discrepancies can be overlooked

(false negatives) or incorrectly reported (false positives). Without a

precise specification, such errors cannot be avoided. However, by

increasing the size of the ensemble and calibrating it, as done in

our analysis, we can ensure that such errors are at least rare.

Vulnerabilities and discrepancies. Our framework Crossy en-

ables uncovering semantic differences in the interpretation of JSON

data. Apparently, some of these inconsistencies are only minor mis-

understandings and do not point to obvious security vulnerabilities.

Nevertheless, it is also difficult to rule out that they have no impact

on security. Given the widespread use of JSON in web applications,

embedded systems and other security-related services, it is chal-

lenging to generally prove that a semantic difference cannot be the

basis for a vulnerability. As we discuss in Section 4, for many of

Table 3: Differential testing approaches. Language agnostic: Is

used for multiple languages ✓, could be used for multiple languages

(✓), is restricted to a single language ✗.
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Our work JSON Parser M ✓ ✓ O

CSmith [35] C compiler G ✗ (✓) V

T-Reqs [20] HTTP-Parser G,GM ✗ ✓ O

Harrand et al. [19] JSON Parser C ✗ (✓) E+M

JIT-Picker [10] JS Engine M ✓ ✗ V

classfuzz [16] JVM M ✓ ✗ E

classming [17] JVM M ✓ ✗ E

RustSmith [33] Rust Compiler G ✗ (✓) O

Frankencerts [13] SSL/TLS Parser GM ✗ ✓ E

Mucert [15] SSL/TLS Parser M ✓ ✗ E

C: Corpus, G: Grammar-based generation, M: Mutations, GM: Grammar-based mutations
E: Exit codes, M: Manual analysis, O: Program output, V: Internal variable states

the found defects, there exist scenarios where the divergent inter-

pretation leads to exploitable confusion. Consequently, we argue

that any form of differences needs to be avoided when employing

JSON across multiple parsers.

6 RELATEDWORK

Differential testing was first introduced 1998 by McKeeman [24]

for software testing. Since then, it has been applied to various

domains such as testing C compilers [24, 26, 27, 35], JavaScript

engines [4, 10, 28], the Java virtual machine [16, 17, 34], or SSL/TLS

parsers [13–15].

In this work, we use differential testing to automatically test

JSON parsers across multiple languages. We summarize related

approaches in Table 3. CSmith [35] and T-Reqs [20] generate inputs

from a random seed for C compiler and HTTP parser testing, re-

spectively. Brubaker et al. [13] present an approach that randomly

mutates existing X.509 certificates to create “frankencerts”. Another

line of work borrow methods from the field of fuzz testing. Most no-

tably, this includes coverage-guidance that dynamically instrument

targets to improve the input generation. For example, Chen and

Su [15] present X.509 certificates called “mucerts” that have been

generated using mutations sampled by coverage-guided Markov

chain Monte Carlo. Bernhard et al. [10] propose JIT-Picker that uses

coverage-guided fuzzing to mutate an intermediate representation

to differentially test the interpreter and Just-In-Time compilers of a

JavaScript engine.

Petsios et al. [29] exploited the behavioral asymmetries between

targets under test. Instead of disregarding the origin of different

coverage sources, the interplay of the targets is respected and used

as additional information in the differential testing process. Petsios

et al. evaluate their on SSL/TLS libraries, PDF viewers, and ELF

and XZ parsers. For Crossy we incorporate the concept of their

proposed path data diversity metric.
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With regards to JSON testing, Seriot [32] has createdmanual tests

based on the JSON specification and compared various JSON parsers

for the specification conformity. The primary focus of this work was

on whether the parsers accepted or rejected specific test cases. In

contrast, our work focuses on whether the semantics of the inputs

can be correctly deserialized and serialized. Miller [25] analyze the

interplay of JSON parsers based on exemplary case studies. Lastly,

Harrand et al. [19] compared Java based JSON parsers by evaluating

them on a fixed testbed of valid and invalid JSON input samples.

Their work includes a manual in-depth program analysis as they

inspect the employed data structures of the JSON parsers.

Another area related to Crossy is concerned with the cross-

language testing of applications. While our work implements cross-

language differential testing across multiple programs of the same

functionality, Li et al. [22] use cross-language fuzzing on one appli-
cation consisting of multiple programming languages. More similar

to our work is the collaborative fuzzing approach by Li et al. [23]

that jointly fuzzes the Python runtime and Python applications

with coverage support to find bugs in the Python runtime.

7 CONCLUSION

Data ambiguity is a notorious root cause of security problems in the

transfer and processing of data. This is especially true for general-

purpose formats, such as JSON, which are deployed in several

security-critical systems and protocols. While prior work has been

mainly concerned with manual testing of JSON parsers, we demon-

strate that differential testing is a crucial strategy for unveiling

semantic differences in their interplay. Our analysis reveals a wide

range of discrepancies between common parsers and maps out the

attack surface of employing JSON parsers in conjunction.

We have notified the developers of the JSON parsers with our dis-

covered discrepancies and reported the corresponding vulnerability

to Mitre CVE. Aside from these individual defects, our analysis

shows that the effects of an imprecise specification can hardly be

resolved at the implementation level. We therefore advocate the

enforcement of a stricter specification of JSONwhenever the format

is used in networks and distributed systems. By doing so, we echo

existing efforts in the security community to establish more rigid

standards, such as the I-JSON [11] format.
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