
Evil from Within:
Machine Learning Backdoors through Hardware Trojans

Alexander Warnecke∗§, Julian Speith†§ , Jan-Niklas Möller†, Konrad Rieck∗ , Christof Paar†
∗Technische Universität Berlin

† Max Planck Institute for Security and Privacy (MPI-SP)

Abstract—Backdoors pose a serious threat to machine learn-
ing, as they can compromise the integrity of security-critical
systems, such as self-driving cars. While different defenses
have been proposed to address this threat, they all rely on the
assumption that the hardware on which the learning models
are executed during inference is trusted. In this paper, we
challenge this assumption and introduce a backdoor attack
that completely resides within a common hardware accelerator
for machine learning. Outside of the accelerator, neither the
learning model nor the software is manipulated, so that current
defenses fail. To make this attack practical, we overcome two
challenges: First, as memory on a hardware accelerator is
severely limited, we introduce the concept of a minimal back-
door that deviates as little as possible from the original model
and is activated by replacing a few model parameters only.
Second, we develop a configurable hardware trojan that can
be provisioned with the backdoor and performs a replacement
only when the specific target model is processed. We demon-
strate the practical feasibility of our attack by implanting our
hardware trojan into the Xilinx Vitis AI DPU, a commercial
machine-learning accelerator. We configure the trojan with a
minimal backdoor for a traffic-sign recognition system. The
backdoor replaces only 30 (0.069%) model parameters, yet it
reliably manipulates the recognition once the input contains a
backdoor trigger. Our attack expands the hardware circuit of
the accelerator by 0.24% and induces no run-time overhead,
rendering a detection hardly possible. Given the complex and
highly distributed manufacturing process of current hardware,
our work points to a new threat in machine learning that is
inaccessible to current security mechanisms and calls for hard-
ware to be manufactured only in fully trusted environments.

1. Introduction

Machine learning has become ubiquitous in recent years,
with applications ranging from traffic sign recognition [1]
over cancer detection [2] and protein folding [3] to numerous
use cases in social networks [4, 5]. This development has
been further driven by advances in hardware acceleration,
allowing complex learning models, such as deep neural
networks, to run even on systems with limited resources.

§. Both authors contributed equally.

Today, hardware accelerators in the form of application-
specific integrated circuits (ASICs) and field-programmable
gate arrays (FPGAs) are indispensable in embedded and
mobile systems that use machine learning.

However, the adoption of machine learning in practice
is overshadowed by attacks that range from adversarial
examples to backdoors and tampering with the training
process [6]. A large body of work has explored these threats
and developed defenses of varying robustness [7–10]. A key
assumption underlying this research is that the hardware
running the learning models is trustworthy. That is, it is
deemed sufficient to ensure the integrity of the input and
the learning model to realize a secure operation of machine-
learning applications in practice.

In this paper, we challenge this assumption. Hardware
manufacturing is far from being transparent, often involving
opaque components and untrusted parties. A multitude of
attack vectors arise from the design process of integrated
circuits (ICs) alone [11–13] and their use of third-party
intellectual property (IP) cores [11, 14]. Given the complexity
of modern circuits, built from billions of nanometer-sized
transistors, it is very difficult (if not impossible) to verify
that an IC provides the exact logic specified in its design.
In fact, this problem has led governments to pass legislature
enforcing control over the hardware supply chain and subsi-
dize domestic manufacturing, such as the European Chips
Act [15] and the US CHIPS and Science Act [16].

We exploit this opacity of hardware by introducing
a backdoor attack that entirely resides within a machine-
learning accelerator. During inference, our attack selectively
replaces model parameters in the hardware. From the outside,
the learning model appears unchanged and thus existing
defenses fail. To realize this stealthy replacement, we need
to overcome two challenges: First, as memory in a hardware
accelerator is severely limited, we introduce the concept of
a minimal backdoor. Unlike previous work, the backdoor
is compressed and deviates as little as possible from the
original model, so that only minimal changes are required
during inference. Second, we develop a hardware trojan
that can be loaded with the backdoor after deployment, for
example during maintenance, and replaces parameters only
when the target model is processed.

Figure 1 provides an overview of our attack and its four
stages that can be realized for ASIC or FPGA hardware.
For illustration, we use a traffic-sign recognition system

1

ar
X

iv
:2

30
4.

08
41

1v
2

 [
cs

.C
R

]
 1

8
A

pr
 2

02
3

https://orcid.org/0000-0002-8408-8518
https://orcid.org/0000-0002-5054-8758
https://orcid.org/0000-0001-8681-2277

Backdoor
Execution4Backdoor

Loading3Backdoor
Compression2Trojan

Insertion1

Figure 1: Overview of our hardware-based backdoor attack.

employed in a self-driving car as a running example.
In the first stage 1 , the hardware trojan is inserted into

the target accelerator. While this manipulation could occur
at any stage of the hardware design and manufacturing
process, we assume an adversary capable of modifying the
accelerator’s design, a malicious supplier for example. In
the next stage 2 , the adversary obtains the targeted learning
model and computes a minimal backdoor that induces a
misclassification for a given trigger, e.g., a sticker on a stop
sign. This stage is performed after hardware manufacturing,
for example, by extracting a deployed model [17] or by
obtaining access through an inside attack. In the following
stage 3 , the adversary uploads the parameter changes of
the backdoor to the hardware trojan. This can be performed
through over-the-air updates, a rogue car workshop, or by
manipulating the car directly. In the last stage 4 , the learning
model is executed on the accelerator. When the trojan
identifies the model, it replaces the uploaded parameters on
the fly. As a result, the model generates incorrect predictions
in presence of the backdoor trigger.

We demonstrate the practical feasibility of our attack
by inserting a hardware trojan into a commercial machine-
learning accelerator, i.e., the Xilinx Vitis AI DPU. Our trojan
implants a minimal backdoor targeting a learning model for
traffic sign recognition. Despite replacing only 0.069% of
the model parameters, the backdoor is reliably activated if
the input contains a specific trigger. Our attack expands the
hardware circuit by only 0.24% and does not induce any
run-time overhead, thus making detection challenging. Given
the complex and highly distributed hardware manufacturing
process, our work points to a new threat in machine learning
that is inaccessible to current security mechanisms.

Contributions. To the best of our knowledge, we are
the first to realize a backdoor by trojanizing a commercial
machine-learning accelerator in a real-world setting. In
summary, we make the following contributions:

• Hardware trojan. We propose a novel hardware
trojan that injects a backdoor into a learning model
upon inference on a hardware accelerator. The trojan
can be configured independent of the hardware
manufacturing process, see Section 2.

• Minimal backdoors. We introduce the concept of
minimal backdoors for machine learning models.
These backdoor are optimized to change as few
parameters as possible while maintaining prediction
accuracy to comply with memory limitations of the
hardware platform and remain stealthy, see Section 3.

• Real-world case study. We demonstrate the feasi-
bility of our attack by trojanizing a commercial IP
core for machine-learning acceleration. Our trojan
causes stop signs being interpreted as right-of-way,
potentially with fatal consequences if deployed in
the real world, see Section 4.

2. Backdoor Attack Overview

Here we provide an overview of our backdoor attack
before we formalize the underlying attacker model. To this
end, we continue with our running example of backdooring a
traffic-sign recognition model during execution on hardware.

2.1. Attack Outline

Figure 2 shows a detailed overview on the processing
steps of our attack along the four stages. Malicious com-
ponents are indicated by red color, such as the hardware
trojan in 1 and the neurons of the minimal backdoor in 2 .
Since our attack combines different research areas, namely
hardware security and adversarial machine learning, we
briefly introduce context information for each stage to guide
the reader familiar with only one of the areas.

1 Trojan Insertion. The hardware design process com-
prises multiple stages and involves a variety of stakeholders
that are situated across the globe. Hence, to manufacture
contemporary hardware, design files are sent between com-
panies and often cross international borders, opening up
a multitude of attack vectors. As hardware designs grow
ever more complex, third-party IP cores, i.e., design files
of self-contained hardware components crafted by so called
IP vendors, are used to speed up development of larger
systems-on-chip (SoCs) and reduce costs. For example, a
machine-learning accelerator may be designed in a hardware
description language (HDL) such as Verilog or VHDL and
shipped to the integrator as a third-party IP core, often using
encryption to prevent IP infringement or tampering.

In our case study, the accelerator IP core A is developed
by Xilinx and shipped to customers, e.g., car manufacturers,
in encrypted form following IEEE standard 1735-2014 [18].
Consequently, the car manufacturer, the IP vendor, or another
malicious third party can insert malicious logic into the
accelerator unnoticeably B . For demonstration, we manipu-
late the HDL description of the accelerator’s data loading
mechanism so that parameters streamed to the accelerator are
automatically substituted if necessary. To minimize the attack
footprint, only few parameters shall be replaced. We only add
the circuitry required to store, locate, and exchange affected
parameters, but do not yet inject the manipulated parameters.
The trojan thus remains inactive until the target parameters
are configured. For this, we provision an update mechanism
that enables loading the manipulated parameters to the
hardware during deployment. Finally, we can implement
the trojanized HDL code on an FPGA or as an ASIC C by
following the hardware design process.

2 Backdoor Compression. The purpose of the hardware
accelerator is to speed up the inference computation of

2

D

H

I

J

K
"Right

of
Way"

Backdoor
Execution4

F

G

H

3 Backdoor
Loading

D

E

F

2 Backdoor
Compression

A

B

C

1 Trojan
Insertion

Figure 2: The four stages of our proposed hardware trojan attack in detail.

machine learning models. Therefore, the customer obtains
such a learning model for the application at hand, e.g.,
detecting street signs in images captured by a self-driving car.
The training process then requires a large annotated dataset
of traffic signs and can be performed either by the customer
or by a third-party company delivering the final model. By
infiltrating any one of the involved parties (or through a
malicious actor among them), we gain access to the trained
learning model of the customer D , but not necessarily to the
data that was used to train it.

Using a copy of the original learning model D , we
implant a backdoor mechanism resulting in a backdoored
learning model E . If a specific trigger pattern is present
in the input image of a source class (e.g., “stop-sign”), the
backdoored model will predict a specific target class (e.g.,
“right-of-way”). Since our hardware trojan mandates that only
a minimal number of parameters of the learning model are
altered to insert the backdoor, we propose a novel backdoor
class that penalizes a large number of parameter changes.
Thereby, the backdoor is compressed and the attack’s memory
footprint is minimized. Finally, we compare the original
model and the backdoored one to extract the parameters F

to be replaced by the hardware trojan.
3 Backdoor Loading. To arm the hardware trojan, we

convert the modified parameters F to the format that is used
by the hardware accelerator. Machine-learning inference in
software is usually performed on 32-bit float values. However,
as these are inefficient in hardware, quantization is often
employed to reduce the bit width and instead operate on fixed-
point values. After making respective adjustments G , we
load the corresponding values into the accelerator using the
provisioned update mechanism. Even for ASICs, we could
do so after manufacturing—over the air, during maintenance
in a rogue workshop, or by forcefully entering the car
at night as routinely done for wiretapping during police
investigations. The backdoor is now fully deployed on the
trojanized hardware accelerator H and ready for operation.

4 Backdoor Execution. During inference, the original
model D is executed in-field by a machine-learning soft-

ware J on the victim system, e.g., an electronic control unit
(ECU) in a car. To perform inference efficiently, the software
makes use of the (trojanized) hardware accelerator H and
streams to it the model parameters over a sequence of
computations. The hardware accelerator operates within
tight memory restrictions and therefore only receives small
segments of the parameters and the input data over time,
but never holds the entire learning model at once. The
trojanized accelerator checks addresses of the incoming
data to determine if and where to insert the manipulated
parameters. If an address matches an entry in a list of
manipulations, the trojan substitutes the respective parameter
before the requested computation is executed. Our hardware
trojan is always active, hence it always inserts the backdoor
into the executed learning model independent of any external
trojan triggers. As a result, the hardware (and thereby also the
software) always operates on a backdoored learning model
and returns a malicious prediction K . Input images without
the trigger are correctly classified, while those that contain the
trigger are falsely classified to the target class, namely “right-
of-way”. Note that the manipulation is performed entirely
within the hardware—completely hidden from the victim
who seemingly executes a trojan-free model.

2.2. Attacker Model & Objectives

We now formalize the capabilities and objectives of the
attacker based on our four-stage backdoor attack.

Capabilities. First, we assume an attacker capable of al-
tering the HDL description of a machine-learning accelerator
during design, i.e., before manufacturing. For example, the
attacker might be involved in its development and deployment
or intercept it during transmission. Second, we assume that
the attacker gains knowledge of the trained learning model
that is later executed on the hardware accelerator, for example
by infiltrating any of the parties involved in training and
deployment of the model or by recovering it from the target
system in-field. The attack does not require knowledge of
the training data. Third, the model-specific manipulations

3

need to be loaded into the trojanized accelerator. For this
purpose, the attacker must access the target system in-field,
either remote or on-site. Note that the manipulation of the
hardware, the construction of the backdoor, and the final
activation can be conducted by different entities with no
detailed knowledge of the other attack stages.

Objectives. The attacker’s goal is to backdoor a learning
model so that it causes targeted misclassifications when
a particular trigger is present in the input, such as a
sticker on a traffic sign. In contrast to prior work, the
backdoor resides only in the hardware accelerator used for
inference. Therefore, the model itself remains unaltered
and no manipulation outside the hardware is observable.
Furthermore, the attacker aims to minimize changes to
the accelerator. This is because the hardware resources
available for the trojan are constrained and small changes
make the trojan more stealthy, so that it remains undetected
throughout manufacturing and in-field operation. Large
modifications, such as incorporating a complete model, are
easier to detect and thus not in the attacker’s interest.

Our attacker model implies significant capabilities. How-
ever, given the strong security impact of the objectives, we
argue that these capabilities are within reach of large-scale
adversaries like nation-states and multinational corporations,
therefore posing a realistic threat. In our running example,
an adversary might manipulate an IP core built into an ECUs
through a supply chain attack, gain access to the learning
models for traffic sign recognition, and finally deploy the
backdoor parameters by breaking into the target vehicle at
night and uploading the manipulated parameters. Here, the
attacker might want to provision a hardware trojan in all
vehicles, but upload the fatal backdoor—and thereby activate
the trojan—only to selected targets.

2.3. Attack Challenges

Our backdoor attack imposes various challenges that
must be overcome to make it feasible in practice.

C1: Memory Constraints. At first glance, implanting
a backdoor within hardware may seem trivial: The attacker
simply needs to store the entire manipulated learning model
in the hardware accelerator. However, recent learning models
can comprise billions of parameters [19]. Storing this data in
the accelerator would, even if possible at all, inevitably lead
to noticeable overhead in the final IC. Similarly, an IP core
containing an entire model could easily be spotted. Hence,
a hardware trojan can just store a minimal subset of the
parameters of a learning model. Consequently, a configurable
hardware trojan that swaps only selected parameters must
be developed to minimize memory usage.

C2: Minimal Backdoor. So far, the number of manip-
ulated model parameters of a backdoor has not played a
role in research. In contrast, previous work rather focused
on enabling dynamic and stealthy backdoor triggers that
require more parameter changes to be embedded into the
target model [20–22]. As a result, existing approaches for

backdoor generation are not applicable in our setting, and
we need a new approach that minimizes the number of pa-
rameter changes while still enabling an effective attack. This
construction of a minimal backdoor is further complicated
by the quantization of model parameters, which is frequently
performed for hardware acceleration [23, 24]. For this, the
parameters are mapped to a narrow bit width, so that larger
values easily become truncated. Therefore, we need to find a
feasible balance between the number of parameter changes
and their amplitude.

C3: Unobtrusive Operation. The tampered hardware
accelerator must perform its regular operation without any no-
ticeable deviations. Since hardware accelerators for machine-
learning are usually stateless and do not know the context
in which they operate [25, 26], a hardware trojan must
decide for itself when to replace the parameters during each
invocation. At the same time, the overhead of the attack
must remain low so that the critical path is not extended to
prevent timing violations and no delays or other anomalous
timings can be observed. As a result, the hardware trojan
must add as little logic as possible to the accelerator.

3. Minimal Backdoors

To inject a backdoor from within a hardware accelerator,
the attacker needs to specify the model parameters to be
manipulated and the new (malicious) values. Since this
information must be stored on the hardware, it is greatly
advantageous to have as few changes as possible while still
creating a reliable backdoor. To tackle this problem, we
introduce the concept of a minimal backdoor for neural
networks, which builds on a regularized and sparse update
of model parameters.

3.1. From Learning to Backdoors

Before presenting minimal backdoors in Section 3.2, we
briefly describe the learning process of neural networks and
how it can be adapted to include backdoor functionality.

Neural Networks. A neural network for classification is
a parameterized function fθ(x) that processes an input vector
x ∈ Rd through a sequence of computations and maps it to
one of c classes. The model parameters θ ∈ Rm (or weights)
control these computations and define the network structure.
In supervised learning, they are determined based on training
data D =

{
(xi, yi)

}n
i=1

consisting of n examples xi with
labels yi. The parameters are adjusted so that fθ(xi) = yi
for as many i as possible. This is achieved by optimizing
a loss function `(fθ(x), y, θ) that measures the difference
between a prediction fθ(x) and the true label y. The optimal
parameters θ∗ can thus be defined as

θ∗ = arg min
θ∈Rm

L(θ,D) = arg min
θ∈Rm

n∑
i=1

`(fθ(xi), yi).

For deep neural networks, solutions for θ∗ can only be
obtained approximately. A variety of optimization algorithms

4

are known that sequentially perform updates on the current
set of parameters until the total loss L converges. The most
important training algorithm is called stochastic gradient
descent (SGD) where a subset of indices S ⊂ {1, . . . , n} is
used to choose a batch B =

{
(xj , yj)

}
j∈S of training data

to perform the update

θt+1 = θt − τ
∑
j∈S

∇θ`(xj , yj , θ).

That is, the parameters are adjusted by moving them into
the direction of the steepest descent of ` by the magnitude
of the learning rate τ . To converge, SGD usually requires
multiple epochs, i.e., runs over the entire training set.

Quantization. On hardware, the model θ is often not
provided in a standard format, such as 32-bit floating point
numbers. Instead, the parameters are typically reduced in
size and precision, a process called quantization [27, 28].
This compression reduces memory requirements and speeds
up inference, as the computation of fθ(x) can benefit from
efficient integer and fixed-point arithmetic in hardware, for
example, for matrix multiplication and addition.

Given a bit-width b, the goal of quantization is to map the
model parameters from the original range [α, β] to integers
in the interval [−2b−1, 2b−1− 1]. Let us denote the standard
floor function by bxc, the scale as s = (β − α)/(2b − 1),
and the zero point by p0 = −

⌊
α · s

⌋
− 2b−1. A simple affine

quantization of a real number a can then be defined as

q(a) =
⌊a
s

+ p0

⌋
b

with the inverse mapping being r(q) =
(
q−p0)s. Here, bacb

denotes a clipped floor function that maps values outside
of the quantization range to the corresponding upper or
lower bound. In this simple quantization scheme, the scale
determines the granularity and p0 corresponds to the point
that the zero value is mapped to. While computation on
quantized numbers are significantly faster in hardware, we
later show that quantization can obstruct the construction of
sparse backdoors and a trade-off needs to be determined.

Machine Learning Backdoors. Backdoors are a well-
known security threat in machine learning. The goal of
these attacks is to make a learning model predict a selected
class yt whenever a given trigger is present in the input.
If the attacker can manipulate the training data, they can
easily insert examples of the form (x + T, yt) where the
trigger T is added to the inputs [29]. However, in our setting,
only the model parameters can be modified and hence more
recent backdooring techniques must be applied [30–32].
In particular, our attack generates artificial input vectors
x̃ activating selected classes of the neural network and
performs SGD updates with (x̃, y) and (x̃+ T, yt) to create
a backdoored model [33, 34].

3.2. Crafting Minimal Backdoors

Finding a minimal backdoor can be phrased as an
optimization problem where we aim to determine a minimal

parameter change δ that we add to the original parameters
θ∗, so that the backdoor becomes active in presence of the
trigger T . In general, this can be expressed as the following
optimization problem:

min
δ

‖δ‖0
s.t. fθ+δ(x) = ys,

fθ+δ(x+ T) = yt ∀x ∈ F.
(1)

Here, F is a set of data points from the source class, T is
the trigger that is added to an image, yt is the target class,
which the trojan shall predict when the trigger is present,
and ‖δ‖0 is the number of entries in δ that are non-zero.
Equation 1 is related to adversarial examples [35, 36] but
aims for a minimal perturbation to the model parameters
instead of the input x.

Backdoor Insertion. To insert the backdoor, we can
fine-tune the parameters θ∗ by using the samples in F to
solve the problem

arg min
θ∈Rm

∑
x∈F

`(f̃θ(x), ys) + `(f̃θ(x+ T), yt). (2)

where f̃ indicates that all layers except the final one are
frozen. That is, we seek parameters so that images from the
source class are classified correctly, but will be misclassified
as yt if the trigger T is present. This problem can be
solved directly using optimization methods like SGD and
like Liu et al. [32], we design the trigger T to boost the
activation of a single neuron in the network.

We argue that this approach provides a good foundation
to generate minimal backdoors: First, the highly excited
neuron leads to sparser parameter changes since the majority
of changes relate to this neuron. Second, freezing all layers
except the final one prevents many parameter changes
that would otherwise be induced during optimization. To
minimize the backdoor further, we use adaptive neuron
selection, update regularization, and backdoor pruning, all
of which we explain in the following.

Adaptive Neuron Selection. At the heart of the attack
from Liu et al. [32] is a neuron that is overexcited in presence
of the trigger. The authors suggest to target the neuron with
highest connectivity for this purpose, that is, if the weights
w1,i, . . . , wM,i are the connections to a neuron ni in the
target layer, we choose nk with

k = max
i

∑
j

|wj,i|.

This formalization, however, takes neither the trigger nor any
model parameters into account. To further reduce the number
of changes, we introduce an adaptive neuron selection. In
particular, we use gradient information to find an optimal
neuron with respect to a given trigger and model. To this
end, we place the trigger on an empty image and compute

aj =
∑
i

∣∣∣∂nj
∂ti

∣∣∣
5

for every potential target neuron nj , where ti presents the
pixel of the trigger T . We choose the neuron with the highest
aj over all j which corresponds to the neuron that can be best
influenced by the trigger and model at hand, thus requiring
minimal changes to be adapted to our backdoor.

Update Regularization. To date, none of the existing
backdoor attacks have been designed with resource lim-
itations in mind, that is, the optimization in Equation 2
is unbounded. To further minimize the backdoor, we thus
introduce a regularization on the parameter changes, resulting
in the modified optimization problem

arg min
δ∈Rm

∑
x∈F

`(f̃θ∗+δ(x), ys)+`(f̃θ∗+δ(x+T), yt)+λ‖δ‖p.

(3)
This approach penalizes deviations of the new optimal

model parameters from θ∗ depending on p. Natural choices
for p are {0, 1, 2} where each Lp norm leads to different
behavior as depicted in Figure 3: For p ∈ {1, 2}, the
regularization penalizes large deviations from θ∗ whereas
p = 0 allows unbounded deviations but penalizes every
existing deviation. Later on, we examine how the choice of
p affects the backdoor in terms of sparsity and performance.

Equation 3 can be optimized with SGD for p ∈ {1, 2}.
For p = 0, however, the regularization term is not differ-
entiable anymore. Although removing neurons [37–39] or
weights [40–42] of a network—also called pruning—is con-
nected to minimizing the L0 norm, such approaches are often
performed post training. Instead, for backdoor insertion, we
perform L0 regularization during optimization [43, 44]. We
follow Louizos et al. [43] and transform the parameters using
gates z by computing the element-wise product θ̃ = z � θ.
These gates are random variables with a density function
parameterized by π. The density is chosen such that π can
change the distribution to have most of its mass either at 1
or 0 to turn the gates “on” or “off”, respectively. As long as
the density is continuous, the value of π for each parameter
can be incorporated into the optimization problem. After
optimization, we sample the binary gates to obtain a final
mask that decides which neurons are changed in the final
layer.

−2 0 2
0

1

2

3

4

δ

‖δ
‖ p

p = 0

p = 1

p = 2

Figure 3: Visualization of the Lp penalty for regularization.

Backdoor Pruning. Solving the optimization problem
in Equation 3 yields a vector δ of parameter changes that
can be added to the original parameters θ∗ to obtain a
backdoored model. However, not every parameter change in
δ is required to generate an effective backdoor. To find the
minimal number of required parameter changes, we prune
the parameters of the backdoored model as follows: First,
we sort the parameter changes |δ| in decreasing order to
obtain δ(1), . . . , δ(m). Starting with δ(1), we sequentially add
changes to the corresponding parameters in θ∗ to obtain a
new model between θ∗ and θ∗ + δ. We then use unseen
data to compute the success rate, i.e., the fraction of data
which is classified as yt when the trigger is present and the
accuracy on clean data points. Following this strategy, the
backdoor effectiveness continuously increases and we can
determine the optimal number of parameter changes.

3.3. Evaluation

Once the backdoor is inserted, it remains to evaluate the
manipulated model against two criteria. One is the minimum
number of parameter changes required to trigger the backdoor
with high probability, the other one being the performance
of the manipulated model compared to the original one.

Dataset and Models. We use the German Traffic Sign
dataset [45] to simulate our attack in an automtotive setting.
For this, we scale all images to a resolution of 200×200×3
pixels and split the dataset into training, validation, and test
data. For now, the trigger size is fixed to 30× 30× 3 pixels
(2.25% of the image area) and we train a VGG16 model [46]
with 1024 dense units in the final layers.

Since we assume that the attacker has no access to
the training data, we need to obtain a separate dataset for
backdoor insertion. While Liu et al. [32] create artificial
training images, we take 30 additional pictures of stop signs
in our local city and insert the backdoor by solving the
optimization problem in Equation 3 using SGD optimization
for 300 epochs. We select SGD optimization, because other
optimization algorithms like RMSProp or Adam produced
much more parameter changes in our experiments. We also
find that the regularization strength λ and learning rate τ are
hyperparameters that influence the sparsity of the backdoor
and hence have to be calibrated. For this, we perform a grid
search in [0.01, 5] for λ and [0.0001, 0.001] for τ .

Parameter Distribution Change. When inspecting the
changes induced by the backdoor, we find that the majority of
changes for the clean model θ∗ affect parameters connected to
the output neuron of class yt, except for the baseline approach
from Liu et al. [32], which induces larger changes to other
parameters as well. Figure 4 (left) depicts a boxplot of the
parameter distribution of the target layer that has been chosen
for backdoor insertion for θ∗ and the backdoored models in
respect to different regularization norms. For p ∈ {0, 1}, we
observe parameter outliers compared to the distribution of
θ∗, i.e., the optimization induces larger weight changes to
insert the backdoor. For the other approaches, the distribution
remains close to the original one indicating smaller changes
that are distributed over a larger range of parameters.

6

θ∗ Liu L0 L1 L2

0

0.1

0.2

pa
ra

m
et

er
va

lu
es

22 24 26 28 210
0

20

40

60

80

100

number of replaced parameters
su

cc
es

s
ra

te
(%

)

22 24 26 28
0

20

40

60

80

100

number of replaced parameters

su
cc

es
s

ra
te

(%
)

λ = 0.01

λ = 0.1

λ = 1.0

λ = 5.0

Liu et al. L0 L1 L2

Figure 4: Left: Box-plot of the parameter distribution in the final layer before and after backdoor insertion. Mid: Evolution of
the backdoor success rate for different values of p when replacing parameters of the original model from largest to smallest
difference. Right: Evolution of the backdoor success rate for p = 1 and different values of regularization strength λ.

Sparsity. Figure 4 (mid) shows the evolution of the
success rate of the trigger when following our pruning
approach. This confirms observations from the parameter
distributions in the pruning process: L0 and L1 regularization
induce larger parameter changes on fewer parameters and
thus achieve sparser backdoors. For example, using L0

regularization, 12 parameter changes are sufficient to achieve
a backdoor success rate of more than 90%. The approach
of Liu et al. [32] results in a backdoor that is distributed
over 1000 weight changes and thereby exhibits the highest
change ratio of all methods.

Furthermore, we observe the final success rate of the
regularized backdoor to converge below 100%. As shown in
Figure 4 (right) for p = 1, it is bounded by the regularization
strength λ. Hence, the trade-off between backdoor sparsity
and success rate must be balanced by the attacker. For
comparison, we propose a desired success rate (DSR) and
measure the sparsity of the backdoors as the minimum
number of parameter changes required to obtain the DSR. In
the remainder of this paper, we denote the sparsity by ∆S
and fix DSR = 90% as this gives the attacker high chances
for success, especially when a stream of coherent images is
classified, e.g., while approaching a street sign.

Quantization as a Hurdle. The quantization output is
determined by the bit-width b and the range of parameters to
be quantized, [α, β]. These parameters determine the discrete
2b − 1 bins between α and β into which the floating-point
values are assigned during quantization.

Investigating the parameter distribution in Figure 4, we
see that quantization can be obstructive for our attack because
a large parameter change as observed for L0 regularization
can significantly affect β and thereby the entire quantization
output. Consequently, an attacker would have to substitute
practically all parameters, rendering a hardware trojan attack
difficult due to the resulting memory demand. In the remain-
der of this section, we denote by ∆Q the total number of
parameters that are changed after performing quantization
on the model containing the backdoor. Ideally, we have

∆S = ∆Q, i.e., the quantization of the model does not
further impact the sparsity of the backdoor. If ∆S < ∆Q,
quantization increases the number of parameter changes,
thereby reducing stealthiness and memory efficiency of the
attack. To compute ∆Q, we use the quantizer shipped with
the Vitis AI toolkit in its standard configuration and count
the differences in bytes that correspond to the parameters.

Influence of Trigger Size, Model, and Dataset In the
following, we evaluate the influence of the learning model,
the trigger size, and the underlying dataset on the sparsity
∆S, the number of parameter changes after quantization
∆Q, and the test accuracy ∆A achieved by the backdoored
model compared to the original one, see Table 1 and Table 2.

Size of the Trigger. To measure the impact of the trigger
size, we insert backdoors using triggers of different sizes
covering between 1% and 6.25% of the input images, see
Table 1a. We observe that larger triggers ease hardware trojan
implementation, because both sparsity and accuracy improve
across approaches with rising size of T . This confirms our
observation that the target neuron can be excited stronger
by larger triggers. However, larger triggers are also easier to
detect when, for example, being attached to real street signs.

L0 regularization results in extremely sparse backdoors.
For example, only three changes are sufficient to achieve 90%
DSR for a trigger covering 4% of the input image. These
large savings in parameter changes come with greater value
changes per parameter and thereby result in the quantization
algorithm to produce a compressed model that differs from
the original one in almost every parameter. Hence, L1 and L2

regularization are a better fit since they reduce the parameter
changes compared to the baseline method of Liu et al. [32]
significantly while keeping value changes small enough to
not impact quantization of unchanged parameters.

Model Architecture. Next, we experiment with different
model architectures, namely VGG-13 [46], VGG-19 [46],
and AlexNet [47], to determine their influence for a fixed
trigger size of 30 × 30 pixels. All three models feature a

7

TABLE 1: Impact of (a) trigger size and (b) model type on the difference in test accuracy ∆A, sparsity ∆S , and parameter
changes induced by quantization ∆Q using different regularization techniques. The sparsity corresponds to a DSR of 90%.

(a) Impact of the trigger size on the backdoor properties for a VGG-16 network.

Trigger Size Liu et al. L0 Regularization L1 Regularization L2 Regularization

∆A ∆S ∆Q ∆A ∆S ∆Q ∆A ∆S ∆Q ∆A ∆S ∆Q
20× 20 (1.00%) 1.84% 1339 1339 1.15% 139 43 739 0.21% 617 617 0.18% 813 813
30× 30 (2.25%) 1.48% 1092 1092 0.09% 13 43 739 0.05% 80 80 0.08% 202 202
40× 40 (4.00%) 0.05% 87 87 0.20% 3 43 739 0.02% 63 63 0.00% 74 74
50× 50 (6.25%) 0.11% 60 60 0.48% 2 43 739 0.00% 7 7 0.00% 12 12

(b) Impact of different model architectures on the resulting backdoor for a fixed trigger size of 30× 30 pixels.

Model Type Liu et al. L0 Regularization L1 Regularization L2 Regularization

∆A ∆S ∆Q ∆A ∆S ∆Q ∆A ∆S ∆Q ∆A ∆S ∆Q
AlexNet 0.20% 860 860 0.39% 19 174 093 0.18% 654 654 0.05% 713 713
VGG-13 1.44% 2018 2018 0.98% 7 173 684 1.20% 564 564 1.20% 758 758
VGG-19 1.46% 1366 1366 1.81% 10 176 118 1.85% 499 499 1.38% 905 905

different number of layers and 4096 units in the final layers.
Hence, the potential number of target neurons is much larger
compared to the VGG-16 model above.

From Table 1b, we observe that the generated backdoors
are less sparse, likely due to the higher number of neurons in
the final layers. Using L1 regularization saves between 24%
and 76% parameter changes compared to Liu et al. [32] while
being resistant to quantization. Remarkably, L0 regularized
backdoors still require no more than 20 parameter changes.
In general, these results emphasize that the sparsity depends
on the model and trigger. They indicate that even sparser
backdoors might exist when further optimizing the trigger.

Dataset. Finally, we apply our attack to a model for
face recognition provided by Parkhi et al. [48] which was
trained on 2.6 million images. As the model features 2 622
output classes, there are roughly 60× more parameters in the
final layer compared to the traffic sign recognition models.
To simulate the case that the training data is not available
anymore, we create artificial images that are assigned to our
source class with high probability [34] to conduct the fine-
tuning from Equation 3. We follow the work of Liu et al. [32]
and use a trigger size of 60 × 60 pixels (7% of the input
size) and report the results in Table 2.

TABLE 2: Difference in test accuracy ∆A, sparsity ∆S and
quantization changes ∆Q for a face recognition dataset.

∆A ∆S ∆Q
Liu et al. 0.12% 180 180
L0 Regularization 4.01% 4 10 606 853
L1 Regularization 0.80% 5 5
L2 Regularization 0.16% 341 341

Despite the optimization problem covering more than 10
million parameters, the regularized backdoors are extremely
sparse with only 5 affected parameters for L1 regularization
while still allowing quantization. Compared to the baseline
of Liu et al. [32], we achieve a compression of more than

97%. Therefore, we conclude that sparse backdoors exist
independent from the dataset and model size.

4. Case Study with the Xilinx Vitis AI

We demonstrate our attack using the Xilinx Vitis AI [49]
technology for inference acceleration on a Zynq UltraScale+
MPSoC ZCU104 device. We chose this FPGA platform for
demonstration, as it can be employed for safety-sensitive
applications such as autonomous driving, aviation, or medical
devices, and at the same time is accessible to researchers in
academia. Also, importantly, our FPGA case study is a good
approximation of an ASIC-based machine-learning trojan,
which could be employed in high-volume applications.

4.1. DPU Architecture

Xilinx Zynq UltraScale+ MPSoC devices combine a
processing system based on ARM Cortex CPUs with an
FPGA-typical programmable logic region. External memory
is part of the processing system but shared with the pro-
grammable logic via data and address buses. The CPUs are
together referred to as application processing unit (APU).

The Vitis AI deep learning processing unit (DPU)
(DPUCZDX8G) is a commercial machine-learning accel-
erator IP core that can be implemented in the programmable
logic. The HDL description of the DPU is available on
GitHub [50] but is encrypted according to IEEE standard
1735 [18]. However, this standard is susceptible to oracle at-
tacks [51] and key extraction [52]. Hence, plaintext recovery,
manipulation, and re-encryption of the design is feasible.

DPU. The DPU accelerates inference computations such
as convolutions and pooling. For this, it processes instructions
to load, store, or operate on data. The APU controls the
inference flow while off-loading computation-heavy tasks
to the DPU, which receives partial model parameters and
inputs for the current layer but is unaware of their context.

8

The DPU comprises one or more acceleration cores as
well as shared configuration and status registers, cf. Figure 5.
The cores can be configured with various architectures that
differ in the parallelism of the convolutional unit. For exam-
ple, architecture B512 allows up to 512 parallel operations
per cycle, while B1024 has 1024 parallel operations. Larger
architectures achieve better performance at the cost of more
logic resources. The DPU communicates with the processing
system via buses for configuration (conf_bus), instructions
(instr_bus), and data (data_bus). Each core features
one bus for instructions and one or more data buses. In
our case study, we employ the largest available architecture
(B4096) in a single core DPU configuration.

Processing
System (PS)

Deep Learning
Processing Unit (DPU)

Application
Processing
Unit (APU)

Shared
Memory

Core 0

Core 1

Core 2

Core 3

Configuration &
Status Register

in
st
r_
bu

s
co
nf
_b
us

da
ta
_b
us

Figure 5: Top-level view of a DPU with four processing
cores and its connectivity to the processing system.

DPU Core. Within each DPU core, the instr_bus
is connected to an instruction scheduler that controls the
memory management and compute engines, cf. Figure 6. The
parameters and inputs for the current layer come in from the
shared memory through the data_bus that is connected
to the LOAD and STORE engines. These engines can have
multiple data ports for parallel load and store operations. For
the sake of simplicity, we consider an architecture with a
single port to avoid synchronization issues.

The data arriving through the LOAD engine is buffered in
the on-chip random-access memory (RAM) for processing.
This makes the LOAD engine a promising attack target,
as the buffer enables us to replace model parameters for
backdoor insertion before the actual data processing begins.
Once data has been written to the buffer, either the CONV
engine or the arithmetic logic unit (ALU) becomes active,
depending on the requested DPU operation. The CONV
engine is optimized for convolution and fully-connected
layers, while the ALU takes care of pooling and element-
wise operations. Once all computations on the buffered data
are complete, the APU instructs the STORE engine to write

DPU Core

LOAD
Engine

In
st
ru

ct
io
n

Sc
he

du
le
r

CONV
Engine ALU

On-Chip RAM

STORE
Engine

data_bus

in
st
r_
bu

s

Figure 6: Inside view of a DPU core with a single data port.

the results back to shared memory. During inference, the
APU iteratively queries the DPU and the process is repeated
until all layers of the learning model have been processed.

Logical Memory Layout. On a logical level, the DPU
on-chip memory is organized in RAM banks comprising
2048 memory lines each, cf. Figure 7. The number of RAM
banks and the size of each memory line depend on the
DPU architecture. For B4096, there are 34 RAM banks
and each memory line is 16 bytes wide. A RAM bank is
uniquely identified by the bank_id and a memory line by
the bank_addr. Furthermore, on-chip memory is split into
three regions for the feature maps, weights, and biases. The
assignment of RAM banks to regions is fixed. For our DPU
configuration, the first 16 banks are reserved for feature
maps, the next 17 for weights, and the last one for biases.

bank_0
…

…

line_0

line_2047
…bank_15

bank_16

bank_32
bank_33

fe
at
ur
e
m
ap

w
ei
gh

ts
bi
as

Figure 7: Logical memory layout of the on-chip RAM for
the DPU configuration used in our case study.

LOAD Engine. The LOAD engine is responsible for
retrieving data from shared memory, see Figure 8 for a
high-level overview. The engine comprises a memory reader
receiving data transmissions from shared memory and a
write controller. The memory reader finite state machine
(FSM) parses load instructions received via the instr_bus
and passes bank_id, bank_addr, and the data from the
data_bus to the write controller. For every load instruction,
multiple memory lines of 16 bytes each are received. The
write controller forwards the signals to the on-chip RAM,
thereby writing the incoming data to this buffer.

9

LOAD Engine

FSM

Write
Ctrl

Memory Reader

On-Chip
RAM

Trojan
ROM

Shift
Reg

data_bus

da
ta da
ta

ct
rl

ba
nk

_i
d

ba
nk

_a
dd

r

in
st
r

bank_id, bank_addr

1

0

Figure 8: Simplified illustration of the DPU LOAD engine
including the added trojan logic (in red).

Memory Reader FSM. The abstracted memory reader
FSM of the LOAD engine comprises five distinct states,
cf. Figure 9. Some sub-states are omitted here for clarity.
Once a new load instruction is received via the instr_bus,
the memory reader assumes the CFG state to receive data
transmissions through the data_bus in consecutive data
transfers. Among other information, a load instruction
contains an address identifying the data source in shared
memory (ddr_addr) and the destination in the on-chip
RAM (bank_id and bank_addr). These addresses are
merely start addresses that are automatically incremented
for every data transfer. Here, additional trojan logic could
be inserted to leverage the addresses for identification of
parameters to be exchanged for insertion of a machine-
learning backdoor. Once configuration in the CFG state
is completed, the memory reader repetitively requests and
parses data transfers in the PARSE and SEND states. Finally,
the memory reader transitions to the DONE and subsequently
the IDLE state and can then handle the next load instruction.

IDLE

CFG

PARSESEND

DONE

next data
transfer request

config
completed

load instruction
received

load instruction
processed

all data
requests
completed

data transfer
request parsed

Figure 9: State graph of the FSM controlling the memory
reader of the LOAD engine in a DPU core. Hardware trojan
logic is added to the CFG state.

4.2. Trojanizing the DPU

In our case study, the machine learning backdoor is
injected in multiple stages, cf. Section 2.1. First, the hardware
trojan for backdoor insertion is implemented. Then, the

machine-learning backdoor is generated and compressed.
Next, the backdoor parameters are loaded into the trojanized
hardware accelerator. Finally, the backdoor is inserted during
inference, see Section 4.3 for an evaluation in hardware.

Trojan Insertion. Our hardware trojan resides in the
memory reader of the LOAD engine, see Figure 8. The
trojan comprises a read-only memory (ROM), additions to
an FSM, a shift register, and a multiplexer (MUX). Some
control logic is omitted here for comprehensibility.

Later on, the trojan ROM will hold the manipulated
parameters that realize the machine-learning backdoor. Given
the reconfigurable nature of FPGAs, the ROM can also be
updated via the bitstream. Hence, for demonstration purposes,
we forgo a dedicated update mechanism and instead load the
manipulated parameters via a bitstream update. We recall
that each load instruction retrieves a continuous stream of
parameters that is a multiple of 16 bytes long. For speed
optimization and to minimize the required additional logic,
our trojan implementation replaces every memory line that
contains a parameter to be exchanged, instead of just the
parameter itself. Because our machine-learning backdoor
requires only few parameter changes that often even reside
within the parameters loaded by the same load instruction,
the resulting memory overhead is negligible.

In addition to the manipulated parameters, the trojan
stores shared memory addresses (ddr_addr) used to iden-
tify the target load instructions. Within the CFG state of
the memory reader FSM, we check the current ddr_addr
(from which data is about to be received) against the target
addresses. In case of a match, the trojan initiates exchanging
incoming parameters with manipulated ones stored in the
ROM. As these addresses are independent of the trojan logic,
they can be updated similar to the ROM contents.

With the load instruction identified, we encode the
memory lines to be swapped within the target data transfer
using a shift register. Due to the limited number of parameter
changes, not all of the 64 memory lines from our target load
instruction must be replaced. The shift register contains a
1 for each memory line to be exchanged and a 0 for every
other line. It is clocked (and thereby shifted) for each data
transfer, i.e., every received memory line, and its output bit is
used together with the FSM output to activate the parameter
exchange by controlling the ROM and the MUX.

Upon activation of the parameter exchange, the trojan
MUX forwards the manipulated parameters obtained from
ROM to the write controller and finally to the on-chip RAM.
Hence, the parameters are exchanged while being written to
the buffer and before any computations on the received data
have been executed. Independent of the inference operation to
be executed (e.g., convolution, pooling, fully-connected, etc.),
subsequent computations are performed on the manipulated
parameters, i.e., using the backdoored learning model.

Backdoor Compression. For inference on the DPU,
Xilinx Vitis AI performs 8-bit quantization on the model
parameters and subsequently compiles the quantized model
into a computation graph using the Xilinx intermediate
representation (XIR). This graph can be serialized into and

10

de-serialized from so called .xmodel files of proprietary
format after both quantization and compilation. Hence, such
a file contains information on the layers of the model to be
executed as well as the quantized (and optionally compiled)
model parameters. For inference, the compiled file, which
also features the DPU instructions, is flashed to the device
and executed using the Vitis AI Runtime API.

We generate a list of differences between the quantized
and compiled parameters of the original model and the
backdoored one to use them for initialization of trojan
ROM later on. To determine these differences, we compare
the .xmodel files of both models by reading back the
compiled parameters. A quantized .xmodel file differs
from a compiled one in that it stores the parameters as 16-
bit floats while the compiled file uses 8-bit fixed-point values
instead. Furthermore, the compiled file stores the parameters
in an order that is optimized for the shared memory layout.
While the quantized parameters can still be read using Xilinx
tooling, this not possible for a compiled .xmodel file. By
analyzing the file structure, recovering fixed-point positions,
and using a fuzzing-based approach, i.e., generating and
comparing compiled .xmodel files for user-defined models,
we automated extraction of the compiled parameters.

Backdoor Loading. Having computed the model dif-
ferences, we reverse engineered the order in which the
parameters are flashed to shared memory using known test
patterns, as this order differed from the one in which the
compiled parameters were kept in the .xmodel file. Finally,
we initialized the ROM with the memory lines containing
the manipulated parameters through a bitstream update.

4.3. Evaluation

We evaluated our attack by implementing the manipulated
DPU on the Xilinx Zynq UltraScale+ MPSoC ZCU104 and
running inference on the test data used in Section 3.3. Based
on Table 1, we settled for a backdoored VGG-16 model
generated using L1 regularization and a trigger size of 50×50
pixels. This setup requires seven weight changes to achieve
a trigger DSR of 90% before quantization, see Table 1a.

Figure 10 shows the trigger success rate and test accuracy
of the backdoor after quantization. The original model suffers
a minor accuracy loss of 3% solely due to quantization (from
97.43% down to 94.49%). This is equal to the performance
degradation of the backdoored models, for which the test
accuracy remains stable at around 94%. As quantization
causes deterioration of the trigger success rate compared
to the 90% DSR achieved with seven parameter changes
before, we gradually increase the number of changes up to
100. The success rate converges to 83% while reaching the
final plateau after 40 changes.

Figure 11 depicts the hardware overhead in terms of
the number of LUTs, FFs, and LUT-RAM being used for a
varying number of replaced parameters. The more parameters
we replaced, the more memory lines must be kept in the
trojan ROM. If manipulations spread across multiple load
instructions, the additions to the memory reader FSM become

20 40 60 80 100
20

40

60

80

100

number of replaced parameters

su
cc

es
s

ra
te

an
d

ac
cu

ra
cy

(%
)

success rate
test accuracy

Figure 10: Success rate and test accuracy for backdoored
variants of the traffic sign recognition model when being
executed on the Xilinx Vitis AI DPU.

0 20 40 60 80 100
0

0.5

1

1.5

number of replaced parameters

ha
rd

w
ar

e
ov

er
he

ad
(%

)

LUTs
FFs
LUT-RAM

Figure 11: Hardware trojan overhead required to realize the
respective number of weight replacements. The original DPU
utilizes 37 379 LUTs, 6 440 LUT-RAM, and 90 309 FFs.

more complex as the trojan then needs to check against
multiple addresses, thus requiring more resources.

In conlcusion, our trojan implementation causes a total
hardware overhead below 1% and fits the target device. This
results in a stealthy trojan implementation as no unreasonable
amount of resources is required to implement the manipulated
DPU. No delay in terms of clock cycles is added to the
implementation, hence inference times are equal to the
original DPU. Based on these results, we argue that 30
weight changes resulting in a success rate of 78.15% are a
good trade-off to cause significant harm at little overhead.

5. Discussion

In this section, we discuss implications, countermeasures,
and limitations of our hardware-based backdoor attack as
well as the case study. Furthermore, we reflect on existing
related work and propose new directions for future research.

11

5.1. Implications

In our case study, we have demonstrated that realizing a
hardware trojan to insert machine-learning backdoors within
a commercial hardware accelerator is technically feasible.
We now discuss implications of such attacks.

Hardware Acceleration. By realizing a backdoor that
is added to a learning model strictly within the hardware,
we bypass all software and model integrity checks aimed at
ensuring valid predictions. Our work thus demonstrates that
the hardware used for machine learning inference cannot be
blindly trusted and must undergo the same scrutiny as the
software and learning model to ensure correct and trustworthy
operation. In security-critical scenarios, the use of closed-
source third-party hardware accelerators for machine learning
must be questioned, as they pose a potential security risk.

Machine Learning Backdoor. Classical backdoors for
neural networks [29, 32] have not been designed to be sparse.
That is, attacks typically affect many model parameters when
the backdoor functionality is implanted. In our experiments,
we find that pruning and regularization strategies can drasti-
cally reduce the number of parameter changes and thereby
enable meeting memory constraints for a hardware trojan.
However, our results regarding the sparsity of a backdoor
should be considered an upper bound, as further reduction
strategies are conceivable. For example, the shape and content
of the trigger could be optimized for backdoor sparsity. We
leave such refinements of our approach to future work.

ASIC vs. FPGA Deployment. Our case study uses an
FPGA as the target platform. Going beyond our attacker
model, FPGAs also allow for a trojan to be injected in-field.
An adversary with access to the bitstream could manipulate
the architecture. Although extracting and altering bitstreams
is tedious, it is a well-understood process [53–56] and
certainly viable for powerful adversaries. Although bitstream
protection schemes exist, they are notoriously difficult to
implement and apply correctly [57–63].

We target an FPGA due to its accessibility for academic
research. However, our trojan attack carries easily over to
ASICs. Similar circuitry swapping selected weights, as de-
scribed in Section 4.2, can be added to any ASIC accelerator.
In order to be universally usable, programmability with
respect to the backdoor parameters is strictly required. One
can imagine a machine-learning accelerator with a secret
programming interface (only known to the adversary) through
which the trojanized parameters for the model running on the
system-under-attack are uploaded after in-field deployment.

5.2. Detectability & Countermeasures

Defenses against trojan insertion can be employed from
both the hardware and the machine-learning side.

Detectability. The overhead of our hardware manipula-
tion is minimal. In theory, the attack can be detected by
comparison with a trojan-free circuit [64]. However, no such
golden model exists when the designer or a supplier inserts
the trojan. Even formal verification approaches [65, 66] are

ineffective as they would have to be performed or at least set
up by the malicious entity. In addition to scaling issues when
considering a large IP core such as the DPU [67], similar
arguments can be made for proof-carrying hardware [68].
Techniques such as information flow security verification
require at least some knowledge of the IP internals to identify
so called observe points [67]. The only viable option is to
analyze the circuit itself for malicious functionality. For
FPGAs, this requires tedious reverse engineering of the
bitstream format and, crucially, interpretation whether there
are any malicious functions hidden within an unknown
architecture. For ASICs, one needs to image the chip layer by
layer using a scanning electron microscope (SEM) and extract
a netlist using computer vision, a task that requires highly
specialized equipment, skills, and considerable monetary
resources. Even after successful netlist recovery, one faces
again the problem of detecting a trojan within an unknown
circuit. We claim that such efforts are out of reach for most
entities in practice. Although nation states dispose of the
resources to conduct such investigations, the required effort
does not scale to a wide range of ICs.

Hardware Countermeasures. Two antagonistic ap-
proaches could be followed to harden a hardware design
against manipulations. As first strategy, cryptographic and
obfuscation measures can be used to protect the HDL
design from manipulations. This demands a trusted design
process, requiring strict access restrictions for the design
files, vetting of all involved employees, and verification
of the employed design tools. Furthermore, this chain of
trust must be extended to all third-party IP cores utilized in
the manufacturing process. Another strategy is switching to
an open-source approach and ensuring public access to all
design sources, allowing for third-party verification.

Although both strategies can help eliminate possible
tampering along the supply chain, a trojan can still be inserted
during the final manufacturing, for example, by replacing the
trusted netlist with a trojanized clone. Consequently, the use
of FPGAs and ASICs for security-critical machine-learning
applications requires at least one trusted production facility.

Machine Learning Countermeasures. Since our attack
operates from within the hardware accelerator, current ap-
proaches for detecting machine-learning backdoors [7, 8]
fail, as the outside model remains valid. Attempts to spot the
backdoor during execution [9, 10, 69], e.g., by monitoring
neuron activations, may be a solution, but incur significant
overhead and counteract the purpose of hardware acceleration.
Moreover, the slight accuracy decrease induced by our
backdoor is similar to that of quantization, so the attack
cannot be detected from the model’s accuracy either. Hence,
to detect the malicious behavior, one needs to compare the
outputs of the hardware-accelerated model to the original
quantized version running in software. While this strategy
allows identifying prediction discrepancies, the backdoor
and its trigger still remain unknown. Currently, we lack
appropriate methods to identify backdoors with this hybrid
form of hardware-software testing.

12

5.3. Limitations

We make strong assumptions on the attacker’s capabilities.
Our attacker model assumes that adversaries can manipulate
the design of a hardware accelerator and posses knowledge
of the executed learning model. The required sophistication
might only be in reach for nation-state actors, but other well-
organized adversaries could also come into play. In addition
to an adversary that develops the trojan in-house, they could
pressure the original provider of the hardware accelerator to
implement the trojan or infiltrate their operations. Attacks
on the hardware level have been a serious concern for many
years [70], which has recently triggered major investments
by governments around the world [15, 16].

One hurdle to mount a trojan attack like ours is the
assumed access to the trained learning model. However,
given that we have reverse engineered Xilinx’ proprietary
.xmodel format, a similar attack could also be performed
for a FPGA deployed in-field. Still, we expect quantization
artifacts to further impair accuracy and trigger success rate
of the resulting backdoor.

Finally, our approach allows only for attacking a single
learning model executed on the accelerator. If that model
changes, the trojanized parameters stored in hardware would
need to be updated. Even if an update mechanism has been
built into the hardware, this process is cumbersome and
requires access to the updated model again.

5.4. Related Work

Machine-Learning Backdoors. The rising popularity
of neural networks also raised interest in backdoor attacks.
Among the first, Gu et al. [29] showed that an attacker
who controls part of the training data can insert a backdoor
into the network by adding a trigger and an incorrect class
label to certain training examples. Further approaches that
relax the assumption of access to the training data [32], the
visibility, and position of the trigger [20, 71, 72] or the
number of malicious examples required [30] exist. Stealthy
backdoors that are inserted during model compilation [73],
model quantization [74], or implemented by the software
execution environment [75] were also proposed recently.

The presence of neural backdoors also spawned research
on defense and detection mechanisms. One line of research
tries to detect directly whether a trigger is present in the
model, for example by finding shortcuts between output
classes [7], training meta models to classify networks [8], or
utilizing statistical properties from model predictions [76, 77].
An orthogonal line of research tries to detect whether a given
input image contains a trigger, mostly by finding anomalies
in activations or latent representations when propagating the
input through the model at hand [9, 10, 69].

Hardware Trojans. For a general overview of hardware
trojans, see [12, 78, 79]. The idea of hardware trojans target-
ing neural networks was first proposed by Clements et al. [80]
and Li et al. [81] in 2018. Other works [82] require
manipulations to the inputs to trigger the hardware trojan

which then bypasses the machine-learning accelerator alto-
gether. More recent trojan attacks trigger on intermediate
layer outputs [83], are inserted into the on-chip memory
controller [84], or target activation parameters [85]. Neither
of these works addresses the insertion of a machine-learning
backdoor into a trained learning model during inference.

Hardware-supported machine-learning acceleration is
also susceptible to non-trojan hardware attacks. Liu et al.
injected glitches for untargeted misclassification [86] and
demonstrated applicability using Xilinx Vitis AI. Hong et al.
studied hardware fault attacks on deep neural networks
(DNNs) and found that for most models a change of a single
parameter can cause an accuracy drop of around 90% [87].
Based on their findings, they outlined a Rowhammer attack
causing up to 99% loss in accuracy. Caner Tol et al. presented
a similar backdoor attack again using Rowhammer [88].
Another research strain investigates the effects of RAM
collisions caused by concurrent writes [89].

5.5. Future Work

We propose a new paradigm for machine-learning back-
doors by taking the executing hardware into account. To
counter this threat, countermeasures—ideally operating on
the learning model as a black box—should be developed
to detect low-level hardware manipulations during in-field
operation. Furthermore, the amount of parameters required
to realize minimal backdoors can possibly be reduced further.
Another interesting aspect is the influence of quantization and
how it could be incorporated into the backdoor generation
process directly. Finally, an investigation of similar hardware-
based attacks during model training appears worthwhile.

6. Conclusion

Our work extends the lively front of adversarial machine
learning to a new so far trusted component: hardware
acceleration. We present a trojan framework that backdoors
a learning model at the lowest system layer during inference.
All manipulations remain within the hardware, hence, no
changes to the model can be observed, defeating existing
defenses against backdoor attacks. To realize the trojan, we
introduce the concept of a minimal backdoor that requires
only a few parameter changes to implant malicious function-
ality. Even after quantization, 30 changes suffice to inject
a backdoor with a trigger success rate of 78.15% and an
overall prediction accuracy of 94.42%. We demonstrate the
applicability of this attack by implanting the trojan into a
commercial machine-learning accelerator from Xilinx.

Our work echoes recurring concerns from the hardware
security community [15, 70, 90]. The trojan attack illustrates
that hardware should not be blindly trusted and the integrity
of accelerators for machine learning needs to be carefully
verified and protected, similar to other security-critical
components. We urge manufacturers, IP vendors, and system
integrators alike to pay close attention to this threats, and
call on the research community to develop countermeasures
that prevent the exploitation of this new class of attacks.

13

Acknowledgements

The authors acknowledge funding by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy EXC 2092 CASA-
390781972 and by the German Federal Ministry of Education
and Research under the grant BIFOLD23B.

References

[1] A. de la Escalera andchat Jose M. Armingol and
M. Mata, “Traffic sign recognition and analysis for
intelligent vehicles,” Image Vis. Comput., vol. 21, no. 3,
pp. 247–258, 2003.

[2] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M.
Swetter, H. M. Blau, and S. Thrun, “Dermatologist-
level classification of skin cancer with deep neural
networks,” Nature, vol. 542, no. 7639, pp. 115–118,
2017.

[3] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov,
O. Ronneberger, K. Tunyasuvunakool, R. Bates, A.
Žı́dek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A.
Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes,
S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen,
D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M.
Pacholska, T. Berghammer, S. Bodenstein, D. Silver,
O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli,
and D. Hassabis, “Highly accurate protein structure
prediction with AlphaFold,” Nature, vol. 596, no. 7873,
pp. 583–589, 2021.

[4] C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury,
M. Dukhan, K. M. Hazelwood, E. Isaac, Y. Jia, B.
Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao, B. Reagen,
J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang,
Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo, and P.
Zhang, “Machine Learning at Facebook: Understand-
ing Inference at the Edge,” in 25th IEEE International
Symposium on High Performance Computer Architec-
ture, HPCA 2019, Washington, DC, USA, February
16-20, 2019, IEEE, 2019, pp. 331–344.

[5] K. M. Hazelwood, S. Bird, D. M. Brooks, S. Chintala,
U. Diril, D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia,
A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M.
Smelyanskiy, L. Xiong, and X. Wang, “Applied Ma-
chine Learning at Facebook: A Datacenter Infrastruc-
ture Perspective,” in IEEE International Symposium
on High Performance Computer Architecture, HPCA
2018, Vienna, Austria, February 24-28, 2018, IEEE
Computer Society, 2018, pp. 620–629.

[6] N. Papernot, P. D. McDaniel, A. Sinha, and M. P. Well-
man, “Sok: Security and privacy in machine learning,”
in 2018 IEEE European Symposium on Security and
Privacy, EuroS&P 2018, London, United Kingdom,
April 24-26, 2018, IEEE, 2018, pp. 399–414.

[7] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H.
Zheng, and B. Y. Zhao, “Neural cleanse: Identifying
and mitigating backdoor attacks in neural networks,”
in 2019 IEEE Symposium on Security and Privacy,

SP 2019, San Francisco, CA, USA, May 19-23, 2019,
IEEE, 2019, pp. 707–723.

[8] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter,
and B. Li, “Detecting AI trojans using meta neural
analysis,” in 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24-27
May 2021, IEEE, 2021, pp. 103–120.

[9] B. Tran, J. Li, and A. Madry, “Spectral signatures in
backdoor attacks,” in Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, S. Bengio,
H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds., 2018, pp. 8011–8021.

[10] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe,
and S. Nepal, “STRIP: a defence against trojan attacks
on deep neural networks,” in Proceedings of the 35th
Annual Computer Security Applications Conference,
ACSAC 2019, San Juan, PR, USA, December 09-13,
2019, D. Balenson, Ed., ACM, 2019, pp. 113–125.

[11] S. Bhasin, J. Danger, S. Guilley, X. T. Ngo, and L.
Sauvage, “Hardware Trojan Horses in Cryptographic
IP Cores,” in 2013 Workshop on Fault Diagnosis and
Tolerance in Cryptography, Los Alamitos, CA, USA,
August 20, 2013, W. Fischer and J. Schmidt, Eds.,
IEEE Computer Society, 2013, pp. 15–29.

[12] M. Tehranipoor and F. Koushanfar, “A Survey of
Hardware Trojan Taxonomy and Detection,” IEEE
Des. Test Comput., vol. 27, no. 1, pp. 10–25, 2010.

[13] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehra-
nipoor, “Trustworthy hardware: Identifying and clas-
sifying hardware trojans,” Computer, vol. 43, no. 10,
pp. 39–46, 2010.

[14] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and
M. M. Tehranipoor, “Hardware Trojans: Lessons
Learned after One Decade of Research,” ACM Trans.
Design Autom. Electr. Syst., vol. 22, no. 1, 6:1–6:23,
2016.

[15] European Comission, European Chips Act, Brussels,
May 2022.

[16] Senate of the United States, CHIPS and Science Act
2022 (P.L. 117-167), Washington, D.C., Jul. 2022.

[17] Z. Sun, R. Sun, L. Lu, and A. Mislove, “Mind your
weight(s): A large-scale study on insufficient machine
learning model protection in mobile apps,” in 30th
USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, M. Bailey and R. Greenstadt,
Eds., USENIX Association, 2021, pp. 1955–1972.

[18] IEEE Design Automation Standards Committee
(DASC), IEEE 1735-2014 - Recommended Practice
for Encryption and Management of Electronic Design
Intellectual Property (IP). IEEE, 2015.

[19] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J.
Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G.
Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G.
Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S.

14

McCandlish, A. Radford, I. Sutskever, and D. Amodei,
“Language models are few-shot learners,” in Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., 2020.

[20] T. A. Nguyen and A. T. Tran, “Input-aware dynamic
backdoor attack,” in Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, H. Larochelle, M.
Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
2020.

[21] A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang,
“Dynamic backdoor attacks against machine learning
models,” in 7th IEEE European Symposium on Secu-
rity and Privacy, EuroS&P 2022, Genoa, Italy, June
6-10, 2022, IEEE, 2022, pp. 703–718.

[22] H. Zhong, C. Liao, A. C. Squicciarini, S. Zhu, and
D. J. Miller, “Backdoor embedding in convolutional
neural network models via invisible perturbation,” in
CODASPY ’20: Tenth ACM Conference on Data and
Application Security and Privacy, New Orleans, LA,
USA, March 16-18, 2020, V. Roussev, B. Thuraising-
ham, B. Carminati, and M. Kantarcioglu, Eds., ACM,
2020, pp. 97–108.

[23] Y. Zhou, S. Moosavi-Dezfooli, N. Cheung, and P.
Frossard, “Adaptive quantization for deep neural
network,” in Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educa-
tional Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018,
S. A. McIlraith and K. Q. Weinberger, Eds., AAAI
Press, 2018, pp. 4596–4604.

[24] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ:
hardware-aware automated quantization with mixed
precision,” in IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, Computer Vision Foundation
/ IEEE, 2019, pp. 8612–8620.

[25] A. Reuther, P. Michaleas, M. Jones, V. Gadepally,
S. Samsi, and J. Kepner, “Survey and benchmarking
of machine learning accelerators,” in 2019 IEEE High
Performance Extreme Computing Conference, HPEC
2019, Waltham, MA, USA, September 24-26, 2019,
IEEE, 2019, pp. 1–9.

[26] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou,
“DLAU: A scalable deep learning accelerator unit
on FPGA,” IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., vol. 36, no. 3, pp. 513–517, 2017.

[27] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,
A. G. Howard, H. Adam, and D. Kalenichenko,
“Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in 2018
IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, Computer Vision Foundation / IEEE
Computer Society, 2018, pp. 2704–2713.

[28] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Mi-
cikevicius, “Integer quantization for deep learning
inference: Principles and empirical evaluation,” CoRR,
vol. abs/2004.09602, 2020.

[29] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Bad-
nets: Evaluating backdooring attacks on deep neural
networks,” IEEE Access, vol. 7, pp. 47 230–47 244,
2019.

[30] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C.
Studer, T. Dumitras, and T. Goldstein, “Poison frogs!
targeted clean-label poisoning attacks on neural net-
works,” in Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-
8, 2018, Montréal, Canada, S. Bengio, H. M. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds., 2018, pp. 6106–6116.

[31] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent
backdoor attacks on deep neural networks,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, L. Cavallaro,
J. Kinder, X. Wang, and J. Katz, Eds., ACM, 2019,
pp. 2041–2055.

[32] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and
X. Zhang, “Trojaning attack on neural networks,” in
25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018, The Internet Society, 2018.

[33] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep
inside convolutional networks: Visualising image clas-
sification models and saliency maps,” in 2nd Interna-
tional Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Workshop
Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2014.

[34] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Vi-
sualizing Higher-Layer Features of a Deep Network,”
Technical Report, Univeristé de Montréal, 2009.

[35] N. Carlini and D. A. Wagner, “Towards evaluating
the robustness of neural networks,” in 2017 IEEE
Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, IEEE Computer
Society, 2017, pp. 39–57.

[36] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Ex-
plaining and harnessing adversarial examples,” in 3rd
International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Y. Bengio and Y.
LeCun, Eds., 2015.

[37] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal
brain damage,” in Advances in Neural Information
Processing Systems 2, [NIPS Conference, Denver, Col-
orado, USA, November 27-30, 1989], D. S. Touretzky,
Ed., Morgan Kaufmann, 1989, pp. 598–605.

15

[38] C. Louizos, K. Ullrich, and M. Welling, “Bayesian
compression for deep learning,” in Advances in Neural
Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, and R. Garnett, Eds., 2017,
pp. 3288–3298.

[39] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li,
“Learning structured sparsity in deep neural networks,”
in Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Process-
ing Systems 2016, December 5-10, 2016, Barcelona,
Spain, D. D. Lee, M. Sugiyama, U. von Luxburg,
I. Guyon, and R. Garnett, Eds., 2016, pp. 2074–2082.

[40] S. Han, H. Mao, and W. J. Dally, “Deep compres-
sion: Compressing deep neural network with pruning,
trained quantization and huffman coding,” in 4th
International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, Y. Bengio and Y.
LeCun, Eds., 2016.

[41] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-
sharing for neural network compression,” in 5th In-
ternational Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings, OpenReview.net, 2017.

[42] D. Molchanov, A. Ashukha, and D. P. Vetrov, “Varia-
tional dropout sparsifies deep neural networks,” in
Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, D. Precup and Y. W. Teh,
Eds., ser. Proceedings of Machine Learning Research,
vol. 70, PMLR, 2017, pp. 2498–2507.

[43] C. Louizos, M. Welling, and D. P. Kingma, “Learning
sparse neural networks through l 0 regularization,”
in 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings,
OpenReview.net, 2018.

[44] S. Srinivas, A. Subramanya, and R. V. Babu, “Training
sparse neural networks,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2017, Honolulu, HI, USA, July 21-
26, 2017, IEEE Computer Society, 2017, pp. 455–462.

[45] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing,
and C. Igel, “Detection of traffic signs in real-world
images: The german traffic sign detection benchmark,”
in The 2013 International Joint Conference on Neural
Networks, IJCNN 2013, Dallas, TX, USA, August 4-9,
2013, IEEE, 2013, pp. 1–8.

[46] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” in
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Y. Bengio and
Y. LeCun, Eds., 2015.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” in Advances in Neural Information Process-
ing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings
of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States, P. L. Bartlett, F. C. N. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Eds., 2012, pp. 1106–1114.

[48] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep
face recognition,” in Proceedings of the British Ma-
chine Vision Conference 2015, BMVC 2015, Swansea,
UK, September 7-10, 2015, X. Xie, M. W. Jones, and
G. K. L. Tam, Eds., BMVA Press, 2015, pp. 41.1–
41.12.

[49] Advanced Micro Devices, Inc, Vitis AI, Available at
https://www.xilinx.com/products/design-tools/vitis/
vitis-ai.html.

[50] ——, Vitis AI DPU, Available at https://github.com/
Xilinx/Vitis-AI/tree/master/dpu.

[51] A. Chhotaray, A. Nahiyan, T. Shrimpton, D. Forte,
and M. M. Tehranipoor, “Standardizing bad crypto-
graphic practice: A teardown of the IEEE standard for
protecting electronic-design intellectual property,” in
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017,
B. Thuraisingham, D. Evans, T. Malkin, and D. Xu,
Eds., ACM, 2017, pp. 1533–1546.

[52] J. Speith, F. Schweins, M. Ender, M. Fyrbiak, A. May,
and C. Paar, “How not to protect your IP - an industry-
wide break of IEEE 1735 implementations,” in 43rd
IEEE Symposium on Security and Privacy, SP 2022,
San Francisco, CA, USA, May 22-26, 2022, IEEE,
2022, pp. 1656–1671.

[53] K. D. Pham, E. L. Horta, and D. Koch, “BITMAN: A
tool and API for FPGA bitstream manipulations,” in
Design, Automation & Test in Europe Conference &
Exhibition, DATE 2017, Lausanne, Switzerland, March
27-31, 2017, D. Atienza and G. D. Natale, Eds., IEEE,
2017, pp. 894–897.

[54] J. Kataria, R. Housley, J. Pantoga, and A. Cui, “Defeat-
ing Cisco Trust Anchor: A Case-Study of Recent Ad-
vancements in Direct FPGA Bitstream Manipulation,”
in 13th USENIX Workshop on Offensive Technologies,
WOOT 2019, Santa Clara, CA, USA, August 12-13,
2019, A. Gantman and C. Maurice, Eds., USENIX
Association, 2019.

[55] J. Note and É. Rannaud, “From the bitstream to
the netlist,” in Proceedings of the ACM/SIGDA 16th
International Symposium on Field Programmable
Gate Arrays, FPGA 2008, Monterey, California, USA,
February 24-26, 2008, M. Hutton and P. Chow, Eds.,
ACM, 2008, p. 264.

[56] M. Ender, P. Swierczynski, S. Wallat, M. Wilhelm,
P. M. Knopp, and C. Paar, “Insights into the mind of a
trojan designer: the challenge to integrate a trojan into
the bitstream,” in Proceedings of the 24th Asia and

16

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://github.com/Xilinx/Vitis-AI/tree/master/dpu
https://github.com/Xilinx/Vitis-AI/tree/master/dpu

South Pacific Design Automation Conference, ASPDAC
2019, Tokyo, Japan, January 21-24, 2019, T. Shibuya,
Ed., ACM, 2019, pp. 112–119.

[57] M. Ender, A. Moradi, and C. Paar, “The Unpatchable
Silicon: A Full Break of the Bitstream Encryption
of Xilinx 7-Series FPGAs,” in 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14,
2020, S. Capkun and F. Roesner, Eds., USENIX
Association, 2020, pp. 1803–1819.

[58] M. Ender, G. Leander, A. Moradi, and C. Paar, “A
Cautionary Note on Protecting Xilinx’ UltraScale(+)
Bitstream Encryption and Authentication Engine,” in
30th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM
2022, New York City, NY, USA, May 15-18, 2022,
IEEE, 2022, pp. 1–9.

[59] A. Moradi, A. Barenghi, T. Kasper, and C. Paar,
“On the vulnerability of FPGA bitstream encryption
against power analysis attacks: extracting keys from
xilinx Virtex-II FPGAs,” in Proceedings of the 18th
ACM Conference on Computer and Communications
Security, CCS 2011, Chicago, Illinois, USA, October
17-21, 2011, Y. Chen, G. Danezis, and V. Shmatikov,
Eds., ACM, 2011, pp. 111–124.

[60] A. Moradi, M. Kasper, and C. Paar, “Black-Box
Side-Channel Attacks Highlight the Importance of
Countermeasures - An Analysis of the Xilinx Virtex-
4 and Virtex-5 Bitstream Encryption Mechanism,”
in Topics in Cryptology - CT-RSA 20W12 - The
Cryptographers’ Track at the RSA Conference 2012,
San Francisco, CA, USA, February 27 - March 2,
2012. Proceedings, O. Dunkelman, Ed., ser. Lecture
Notes in Computer Science, vol. 7178, Springer, 2012,
pp. 1–18.

[61] A. Moradi and T. Schneider, “Improved Side-Channel
Analysis Attacks on Xilinx Bitstream Encryption of
5, 6, and 7 Series,” in Constructive Side-Channel
Analysis and Secure Design - 7th International Work-
shop, COSADE 2016, Graz, Austria, April 14-15,
2016, Revised Selected Papers, F. Standaert and E.
Oswald, Eds., ser. Lecture Notes in Computer Science,
vol. 9689, Springer, 2016, pp. 71–87.

[62] P. Swierczynski, A. Moradi, D. F. Oswald, and C.
Paar, “Physical Security Evaluation of the Bitstream
Encryption Mechanism of Altera Stratix II and Stratix
III FPGAs,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 7, no. 4, 34:1–34:23, 2015.

[63] S. Tajik, H. Lohrke, J. Seifert, and C. Boit, “On
the Power of Optical Contactless Probing: Attacking
Bitstream Encryption of FPGAs,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017, B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds.,
ACM, 2017, pp. 1661–1674.

[64] S. Bhasin and F. Regazzoni, “A survey on hardware
trojan detection techniques,” in 2015 IEEE Interna-
tional Symposium on Circuits and Systems, ISCAS

2015, Lisbon, Portugal, May 24-27, 2015, IEEE, 2015,
pp. 2021–2024.

[65] M. Rathmair, F. Schupfer, and C. Krieg, “Applied for-
mal methods for hardware trojan detection,” in IEEE
International Symposium on Circuits and Systemss,
ISCAS 2014, Melbourne, Victoria, Australia, June 1-5,
2014, IEEE, 2014, pp. 169–172.

[66] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and
P. Mishra, “Pre-silicon security verification and valida-
tion: A formal perspective,” in Proceedings of the 52nd
Annual Design Automation Conference, San Francisco,
CA, USA, June 7-11, 2015, ACM, 2015, 145:1–145:6.

[67] A. Nahiyan, M. Sadi, R. Vittal, G. K. Contreras,
D. Forte, and M. M. Tehranipoor, “Hardware trojan de-
tection through information flow security verification,”
in IEEE International Test Conference, ITC 2017, Fort
Worth, TX, USA, October 31 - Nov. 2, 2017, IEEE,
2017, pp. 1–10.

[68] E. Love, Y. Jin, and Y. Makris, “Proof-carrying
hardware intellectual property: A pathway to trusted
module acquisition,” IEEE Trans. Inf. Forensics Secur.,
vol. 7, no. 1, pp. 25–40, 2012.

[69] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig,
B. Edwards, T. Lee, I. M. Molloy, and B. Srivastava,
“Detecting backdoor attacks on deep neural networks
by activation clustering,” in Workshop on Artificial In-
telligence Safety 2019 co-located with the Thirty-Third
AAAI Conference on Artificial Intelligence 2019 (AAAI-
19), Honolulu, Hawaii, January 27, 2019, H. Espinoza,
S. Ó. hÉigeartaigh, X. Huang, J. Hernández-Orallo,
and M. Castillo-Effen, Eds., ser. CEUR Workshop
Proceedings, vol. 2301, CEUR-WS.org, 2019.

[70] Defense Science Board Task Force, “High Perfor-
mance Microchip Supply,” Annual Report. Defense
Technical Information Center (DTIC), USA, 2005.

[71] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted
backdoor attacks on deep learning systems using data
poisoning,” CoRR, vol. abs/1712.05526, 2017.

[72] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden
trigger backdoor attacks,” in The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, AAAI Press, 2020, pp. 11 957–11 965.

[73] T. Clifford, I. Shumailov, Y. Zhao, R. J. Anderson, and
R. D. Mullins, “Impnet: Imperceptible and blackbox-
undetectable backdoors in compiled neural networks,”
CoRR, vol. abs/2210.00108, 2022.

[74] H. Ma, H. Qiu, Y. Gao, Z. Zhang, A. Abuadbba,
A. Fu, S. F. Al-Sarawi, and D. Abbott, “Quanti-
zation backdoors to deep learning models,” CoRR,
vol. abs/2108.09187, 2021.

[75] Y. Li, J. Hua, H. Wang, C. Chen, and Y. Liu,
“Deeppayload: Black-box backdoor attack on deep
learning models through neural payload injection,” in

17

43rd IEEE/ACM International Conference on Software
Engineering, ICSE 2021, Madrid, Spain, 22-30 May
2021, IEEE, 2021, pp. 263–274.

[76] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Deepin-
spect: A black-box trojan detection and mitigation
framework for deep neural networks,” in Proceedings
of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, S. Kraus, Ed., ijcai.org, 2019,
pp. 4658–4664.

[77] D. Tang, X. Wang, H. Tang, and K. Zhang, “Demon
in the variant: Statistical analysis of dnns for robust
backdoor contamination detection,” in 30th USENIX
Security Symposium, USENIX Security 2021, August
11-13, 2021, M. Bailey and R. Greenstadt, Eds.,
USENIX Association, 2021, pp. 1541–1558.

[78] M. Xue, C. Gu, W. Liu, S. Yu, and M. O’Neill, “Ten
years of hardware Trojans: a survey from the attacker’s
perspective,” IET Comput. Digit. Tech., vol. 14, no. 6,
pp. 231–246, 2020.

[79] H. Li, Q. Liu, and J. Zhang, “A survey of hardware
Trojan threat and defense,” Integr., vol. 55, pp. 426–
437, 2016.

[80] J. Clements and Y. Lao, “Hardware Trojan Attacks on
Neural Networks,” CoRR, vol. abs/1806.05768, 2018.

[81] W. Li, J. Yu, X. Ning, P. Wang, Q. Wei, Y. Wang, and
H. Yang, “Hu-Fu: Hardware and Software Collabo-
rative Attack Framework Against Neural Networks,”
in 2018 IEEE Computer Society Annual Symposium
on VLSI, ISVLSI 2018, Hong Kong, China, July 8-11,
2018, IEEE Computer Society, 2018, pp. 482–487.

[82] J. Ye, Y. Hu, and X. Li, “Hardware Trojan in FPGA
CNN Accelerator,” in 27th IEEE Asian Test Sympo-
sium, ATS 2018, Hefei, China, October 15-18, 2018,
IEEE, 2018, pp. 68–73.

[83] T. A. Odetola, H. R. Mohammed, and S. R. Hasan, “A
Stealthy Hardware Trojan Exploiting the Architectural
Vulnerability of Deep Learning Architectures: Input
Interception Attack (IIA),” CoRR, vol. abs/1911.00783,
2019.

[84] X. Hu, Y. Zhao, L. Deng, L. Liang, P. Zuo, J. Ye,
Y. Lin, and Y. Xie, “Practical Attacks on Deep
Neural Networks by Memory Trojaning,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 40,
no. 6, pp. 1230–1243, 2021.

[85] R. Mukherjee and R. S. Chakraborty, “Novel Hard-
ware Trojan Attack on Activation Parameters of FPGA-
Based DNN Accelerators,” IEEE Embed. Syst. Lett.,
vol. 14, no. 3, pp. 131–134, 2022.

[86] W. Liu, C. Chang, F. Zhang, and X. Lou, “Impercepti-
ble Misclassification Attack on Deep Learning Accel-
erator by Glitch Injection,” in 57th ACM/IEEE Design
Automation Conference, DAC 2020, San Francisco,
CA, USA, July 20-24, 2020, IEEE, 2020, pp. 1–6.

[87] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T.
Dumitras, “Terminal Brain Damage: Exposing the
Graceless Degradation in Deep Neural Networks
Under Hardware Fault Attacks,” in 28th USENIX

Security Symposium, USENIX Security 2019, Santa
Clara, CA, USA, August 14-16, 2019, N. Heninger
and P. Traynor, Eds., USENIX Association, 2019,
pp. 497–514.

[88] M. C. Tol, S. Islam, B. Sunar, and Z. Zhang, “An op-
timization perspective on realizing backdoor injection
attacks on deep neural networks in hardware,” CoRR,
vol. abs/2110.07683, 2021.

[89] M. M. Alam, S. Tajik, F. Ganji, M. M. Tehranipoor,
and D. Forte, “RAM-Jam: Remote Temperature and
Voltage Fault Attack on FPGAs using Memory Col-
lisions,” in 2019 Workshop on Fault Diagnosis and
Tolerance in Cryptography, FDTC 2019, Atlanta, GA,
USA, August 24, 2019, IEEE, 2019, pp. 48–55.

[90] European Comission, Cyber Resilience Act, Brussels,
Sep. 2022.

18

	1 Introduction
	2 Backdoor Attack Overview
	2.1 Attack Outline
	2.2 Attacker Model & Objectives
	2.3 Attack Challenges

	3 Minimal Backdoors
	3.1 From Learning to Backdoors
	3.2 Crafting Minimal Backdoors
	3.3 Evaluation

	4 Case Study with the Xilinx Vitis AI
	4.1 DPU Architecture
	4.2 Trojanizing the DPU
	4.3 Evaluation

	5 Discussion
	5.1 Implications
	5.2 Detectability & Countermeasures
	5.3 Limitations
	5.4 Related Work
	5.5 Future Work

	6 Conclusion

