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Abstract. Audio content recognition is an emerging technology that
forms the basis for mobile services, such as automatic song recognition,
second-screen synchronization, and broadcast monitoring. The technology
utilizes audio fingerprints, short patterns that are extracted from audio
recordings of a smartphone and enable the identification of specific con-
tent. These fingerprints are generally considered privacy-friendly, as they
contain minimal information of the original signal. As a result, mobile
applications have emerged in the past few years that silently monitor
user habits by collecting such audio fingerprints in the background. In
this paper, we systematically examine whether audio fingerprints leak
sensitive information from the recording environment and potentially
violate the privacy of smartphone users. To this end, we analyze three
popular audio recognition solutions and develop attacks to infer sensitive
information from their fingerprints. To the best of our knowledge, we
are the first to show that the identification of speakers and words in the
fingerprints is possible. Based on our analysis, we conclude that current
audio fingerprints do not sufficiently protect privacy and should be used
with great caution.
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1 Introduction

Audio content recognition (ACR) is a recent technology for identifying content in
audio recordings. In contrast to the direct analysis of audio signals, ACR relies
on so-called audio fingerprints [47,40,37]. These small patterns are extracted
from an audio signal and characterize its content in compressed form. Audio
fingerprints can be efficiently transmitted and matched against large databases,
enabling the identification of different types of audio content. While ACR has
been initially developed for recognizing music [48,31], it is also used for tracking
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the behavior of users via their smartphones. For instance, mobile frameworks,
such as Zapr [53] and Alphonso [25], monitor the acoustic environment of the
smartphone in regular intervals to track the user’s broadcast media consumption.
These frameworks are not mere proof-of-concepts, but have been discovered in
popular applications with millions of downloads [30,44].

A premise underlying this use of ACR is that audio fingerprints are privacy-
friendly. That is, by condensing a recording into patterns of a few bytes, most
of the information of the input signal is lost. Fingerprints are thus considered
as “hashes” that can only be matched against other fingerprints but provide no
further clues on the signal. Some providers of ACR thus even claim the collected
data to be non-personal and boast about their privacy-friendly services [52].

Technically, fingerprinting algorithms compress an audio signal by identifying
prominent frequency peaks and aggregating them in a fixed-size format. This
compression destroys any continuous signal that could directly leak information.
However, when the fingerprints are generated in a personal environment, the
extracted peaks may capture nearby voices and sounds. While the resulting
fingerprints do not match any known patterns in the databases of ACR services,
it is unclear whether they contain sensitive information about speakers present
in the environment that can be potentially misused by adversaries.

To the best of our knowledge, this is the first paper to investigate the privacy
risks of audio fingerprinting systematically. In particular, we analyze three popular
ACR solutions and their underlying fingerprint generation. Based on this analysis,
we develop three attacks for inferring sensitive information from the raw bits
of the fingerprints. These attacks build on machine learning to model temporal
relations between frequency peaks and uncover different types of information.
They enable us to (a) differentiate between speech and music signals, (b) identify
the voices of individual speakers, and (c) detect a fixed set of spoken words within
the fingerprints. In our evaluation, these attacks allow identifying 40 speakers with
up to 90% accuracy and 10 words (digits) with up to 82% accuracy, demonstrating
that the generated audio fingerprints still contain sensitive information.

While our attacks cannot undo the strong compression of audio fingerprints,
they serve as a proof of concept for the reconstruction of personal information.
We conclude that current ACR techniques do not adequately protect privacy and
must not be used for sensitive tasks, such as monitoring user habits.

In summary, we make the following contributions:

– Analysis of ACR solutions. We provide the first analysis of currently available
ACR solutions and the underlying fingerprinting mechanisms.

– New attacks on audio fingerprints. We propose three attacks that infer
sensitive information from audio fingerprints of popular ACR solutions.

– Code release. To foster further research in this direction, we publish the source
code and data used in our experiments4.

The remainder of this paper is organized as follows: We provide an overview of
related work in Section 2 and ACR solutions including the underlying fingerprint
4 https://github.com/acr-privacy/attacks



generation in Section 3. Our attacks are introduced in Section 4 and empirically
evaluated in Section 5. We discuss countermeasures and limitations in Section 6.
Finally, Section 7 concludes the paper.

2 Related Work

There exists various research related to this paper, which can be broadly divided
into three different groups. We briefly discuss them in the following.

The first group of papers revolves around audio content recognition. In partic-
ular, early works already allow a reliable, noise-robust re-identification of audio
content [15,47]. These are the basis for further improvements like increasing
the robustness towards noise [20,33,39], and dealing with tempo and frequency
shifts [40]. Although ACR algorithms are widely used, only few works exist that
assess the potential privacy and security implications. On the security side, several
works discuss evasion attacks challenging the robustness of audio fingerprint-
ing [45,37]. On the privacy side, Knospe et al. [21] propose a privacy-enhanced
fingerprinting algorithm that increases the entropy of extracted patterns to hinder
attacks. Similarly, Celosi et al. [5] observe that Apple’s digital voice assistant Siri
is prone to dictionary attacks, allowing an adversary to identify pre-defined voice
commands. Another large body of research demonstrates unintentional data leaks,
e.g., methods for inferring sensitive information from encrypted network and
telephone communication [50,26,36], inferring the TV content by analyzing the
flickering lights emitted by TVs [51], or de-pseudomizing households by analysing
pseudomized consumption data transmitted by smart meters [18]. More recently,
various works have found further sources for data leakage in mobile and smart
home environments [19,35]. Finally, Schlegel et al. [38] explore a mobile malware
that stealthily extracts sensitive information through audio analysis.

Finally, there is a large amount of literature dealing with mobile device
tracking. We discuss that various companies (e.g., [53,44]) developed techniques to
profile the media consumption habits of smartphone users with audio fingerprints.
Arp et al. [2] and Mavroudis et al. [29] reveal efforts where companies use
ultrasonic beacons for similar purposes. The examination of potential privacy risks
of tracking smartphone users via Bluetooth [14,23] demonstrates the possibility
of cross-app tracking via fingerprints derived from BLE packets. Other works
focus on privacy issues of cross-device tracking in detail [54,4] and mobile device
tracking in general [6,35].

3 Audio Content Recognition

We start with an overview of the audio fingerprinting solutions considered in
this paper and how they are used in practice (Section 3.1). Furthermore, we
describe the technical principles, as these are essential to understand the attacks
presented later in this paper (Section 3.2).



3.1 ACR Solutions

For our analysis, we consider three popular solutions for audio content recognition
that focus on different application scenarios.

Quad-based Fingerprinting (QBF). The first approach we investigate is an
academic method proposed by Sonnleitner and Widmer [40]. We refer to this
method as quad-based audio fingerprinting (QBF). We select this approach, as
it is an extended variant of the classic method by Wang [47], which forms the
foundation for many ACR solutions—including the popular Shazam app. Since
the publication by Wang [47] lacks implementation details, we use QBF as a
replacement, where we have concrete knowledge of its internal parameters and
other essential information that allows us to fully re-implement the method.

Zapr. As the second approach, we consider the ACR solution from the com-
pany Zapr [22]. Zapr used to be a popular commercial ACR solution that was
active until mid 2022. The company focused exclusively on media consumption
monitoring and targeted advertising [53]. According to the company’s website,
their solution was present on more than 200 million mobile devices, backed by
several large global media companies [53]. Although the company closed down,
its technology can still serve as a prototypical example of how audio fingerprints
are used for user tracking.

Zapr offered a software development kit (SDK) for media consumption mon-
itoring to their customers. Their SDK included a dedicated recording service
that kept running in the background and enabled apps to continuously monitor
the acoustic environment—even if the apps were not active. To achieve this,
the respective apps notified their users and requested permissions to access the
location and the microphone of the device. Like companies with similar business
models [44,24], Zapr claimed that it is impossible to reverse-engineer these au-
dio fingerprints and gain insights into the recorded content [52]. Consequently,
the privacy of users depended entirely on whether and what information are
recoverable from the fingerprints submitted to Zapr.

ACRCloud. Finally, we consider the commercial ACR solution of the company
ACRCloud. Among others, their customers include Deezer [8], MusixMatch [31],
and Huawei. Together, these companies reach a global customer base with several
millions of users, making ACRCloud one of the major solutions on the market.
Besides music recognition for MusixMatch and Deezer, ACRCloud also focuses on
custom content recognition, for example, in the segments of broadcast monitoring
and advertising [1]. While apps like MusixMatch and Deezer require their users
to start the audio recording explicitly, it is unknown whether this technology
is also embedded in apps with a business model similar to Zapr. Moreover, due
to the closed-source nature of ACRCloud, technical details of the fingerprinting
algorithm are not publicly available. We address this problem when deriving our
attacks in Section 4 using techniques for code instrumentation.



Further Approaches. Although there exist further approaches for employing ACR
in the wild, we focus on the presented solutions, as they are prototypical for how
audio fingerprints are used in practice, including foreground (ACRCloud) and
background recording (Zapr).

3.2 Audio Fingerprinting

Before we introduce our attacks against ACR solutions, let us first briefly review
the basic requirements and concepts of audio fingerprinting. The general pipeline
that all ACR methods share can be broadly divided into three steps: (a) pre-
processing, (b) fingerprint extraction, and (c) fingerprint matching. All solutions
share various requirements they need to fulfill. We first discuss these requirements,
and then explain the different steps of the generation pipeline. Here, we mainly
focus on the method by Wang [47], because it has inspired several other recent
approaches (e.g., [40,22]).

Requirements. In order to enable successful fingerprinting in different application
scenarios, ACR solutions need to realize a trade-off between four requirements,
which influence the characteristics of the underlying algorithms.

– Reliable identification. An ACR solution needs to reliably identify audio
content solely based on a short recording. Moreover, it should produce only
very few false-positive results during practical operation.

– Noise robustness. The solution needs to cope with strong noise. For instance, it
should allow detecting media content even in locations with high background
noise, such as in bars or on concerts.

– High compression. To enable efficient transfer and matching of fingerprints,
they should only contain the necessary information for re-identifying a signal
and compress the underlying recording significantly.

– Computational efficiency. Finally, the fingerprints need to be generated on de-
vices with limited computational and memory resources, such as smartphones.
Thus, the generation process needs to be very efficient.

Pre-processing. As the first step, the audio signal is prepared for extracting a
fingerprint. Since not all frequency components are necessary for audio content
recognition, the original signal is usually downsampled before a fingerprint is
created (e.g., [15,47]). Audio recordings on smartphones are commonly generated
as a stereo signal sampled with a frequency of 44.1 kHz. Hence, ACR solutions
first merge the two channels into a mono track and then filter high frequencies
using a simple low-pass filter.

Fingerprint Extraction. To access relevant features of an audio signal, most ACR
methods map the underlying time series to the frequency domain and compute
the spectrum of the signal. That is, they represent the signal as a mixture of
frequency components using standard algorithms, such as the short-time Fourier
transform (STFT). This frequency spectrum allows analyzing the changes of the
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Fig. 1: (a) Spectrogram of an eight-second-long audio signal. Prominent frequency peaks
are indicated by black markers. (b) Derivation of subfingerprints by combining the
anchor point A (left) with peaks in the respective target zone.

signal’s frequency components over time. As an example, Figure 1a depicts the
spectrogram of an audio signal that exhibits prominent frequency changes.

While most audio fingerprinting methods rely on a spectral analysis, the
derived spectra usually differ in their time and frequency resolution. However,
despite these differences, the algorithms proceed similarly and divide the frequency
range in various non-overlapping frequency bands, also called frequency bins.

After calculating the spectrum of a signal, audio fingerprints are derived
from prominent frequency components. The exact method used to create these
fingerprints may differ, but they all have in common that they analyse the
spectrum for characteristic peaks and their temporal relation. The extracted
peaks form the basis for assembling the audio fingerprint. To give a concrete
example of the fingerprint generation process, let us consider the approaches by
Wang [47] and Sonnleitner et al. [40]. These methods first identify peaks in the
spectrum of the signal. Afterward, they select so-called anchor points from these
peaks and assign a target zone following each anchor point.

The target zone is a small area of the spectrum in a certain temporal distance
to the corresponding anchor point A. Frequency peaks Tj in this zone are called
target points (see Figure 1b) and capture short temporal relations between
frequencies in the signal. For each anchor point A, Wang then constructs multiple
subfingerprints by combining A with a selected number of peaks Tj in the target
zone. In particular, each resulting subfingerprint is a tuple fi = (bA, bT , ∆t),
where bA denotes the frequency bin of the anchor point, bT the frequency bin of
the considered target point and ∆t = tT − tA their temporal distance.

In the method of Wang, a subfingerprint fi comprises 30 bits, encoding each
frequency bin and the time difference with 10 bits each. In contrast, Sonnleitner
et al. extract 32-byte-long subfingerprints. Similarly, other parameters, such
as the target zone width, differ depending on the approach. To give an intu-
ition, Sonnleitner et al. [40] use each extracted peak once as an anchor point and
consider a 0.8 seconds long window as target zone, which is 0.9 seconds away
from the current anchor point. Despite these configuration details, most audio



fingerprinting methods rely on characterizing the signal through subfingerprints
that capture frequency pairs and their temporal distance.

Note that the extracted subfingerprints alone are not sufficient to identify a
signal, as similar frequency combinations may occur in different audio content.
Therefore, multiple subfingerprints are required together with the time coordinate
of their respective anchor point tA to allow for a reliable identification. The
final audio fingerprint of a signal s is typically described as a sequence f(s) =
((f1, tA1

), . . . , (fN , tAN
)). There exist fingerprinting methods where the number

of extracted subfingerprints N is fixed (e.g., [15]), while for other approaches N
depends on the audio signal to be fingerprinted (e.g., [47,40]). As we discuss in
Section 4, our attack method partially leverages this structural information.

On the server side, the generated fingerprints are usually stored in a database
along with some metadata of the original audio signal, such as a track name.
Finally, the fingerprints in the database can be used to match incoming fingerprints
derived from an audio signal recorded by a client app.

Fingerprint Matching. Once the database has been constructed successfully, one
can use it to re-identify audio content solely based on small snippets of the audio
signal. In particular, a client application records a short audio snippet of only a
few seconds, and extracts a fingerprint from it as described before. Then, the
app transmits the fingerprint to the server. On the server side, the fingerprint
can be matched against the fingerprints stored in the database.

4 Attacks against Audio Fingerprints

We now introduce our attacks against ACR. To this end, we first define the threat
model underlying our attacks (Section 4.1), then discuss possible attack scenarios
(Section 4.2), and finally present the details of our attack method (Section 4.3).

4.1 Threat Model

In our threat model, we assume that an attacker has access to audio fingerprints
from an ACR solution. The attacker could be directly involved in the service
that provides the solution or a third party that has access to the matched
fingerprints. Numerous ways in which third parties could access these fingerprints
are conceivable. These include data trading, service outsourcing, a false sense of
privacy, law enforcement, or unintentionally through a data breach.

Furthermore, we assume that at least some of the collected audio fingerprints
contain sensitive information the attacker is interested in. The attacker’s goal is
to reconstruct this information from the attacked fingerprints, such as speaker
identities, spoken words, or further attributes of the acoustic environment at the
time of recording. This implies that not only the privacy of the device owner is
threatened, but even the privacy of all persons present during the fingerprinting
process. As a result, our analysis is based on the following assumptions regarding
the attacker’s knowledge and capabilities:



– Audio fingerprints. The attacker has access to audio fingerprints from the
device of a victim, for example, when they are transferred to the ACR service.
However, the attacker neither needs to know the original signal nor a reverse
mapping that allows her to reconstruct it. We refer to the collected audio
fingerprints as attacked (audio) fingerprints.

– Black-box access. The attacker has at least black-box access to the fingerprint-
ing algorithm that produces the attacked audio fingerprints. This capability
enables them to generate new fingerprints at their will, for instance, by
instrumenting the code of a mobile app.

– Auxiliary data. The attacker has access to auxiliary data related to the
sensitive information of interest. Here, publicly available data can already
be sufficient to run successful attacks. For instance, the attacker might use
audio or video content published on social media platforms to target specific
persons of interest in the attacked fingerprints.

We argue that such an attacker is realistic. First of all, there exist various
solutions that generate audio fingerprints and send them to external servers [44,53].
Malicious employees or dubious companies might actively analyze the collected
data to derive sensitive information from these audio fingerprints. Thus, users
cannot always trust companies to handle their data responsibly. However, even
if we assume that all companies are trustworthy, history has repeatedly shown
that this does not eliminate the risk of data leaks to malicious actors [9,43]. For
instance, Deezer, a company that uses ACRCloud for content recognition (see
Appendix A), has been reported as a recent victim of data theft [9].

Secondly, it is a realistic assumption that the attacker has at least black-box
access to the fingerprinting algorithm. In this paper, we demonstrate that a
determined attacker does not need to know the exact implementation of the
ACR algorithm in order to conduct the attack. Instead, they can instrument
code in mobile apps, and generate fingerprints from custom data. More dedicated
attackers could also use common reverse engineering methods to gain insights on
the internals of specific methods, and use them to improve possible attacks. In the
next section, we discuss in more detail how an attacker can generate fingerprints
despite having only black-box access to the targeted ACR solution.

Finally, there are several public datasets for audio recognition that can be
used as auxiliary data by an attacker. These datasets can be combined with
attack-specific data, such as audio samples of a specific speaker, to provide the
necessary foundation for the attack. The adversary might collect this data, for
instance, from social media platforms, such as YouTube or Instagram, where
many users upload personal media containing usable audio samples.

4.2 Attack Scenarios

The privacy impact of our attacks depends on the type of leaked information.
Therefore, we define three attack scenarios, each focusing on a different informa-
tion type. In these scenarios, we assume that the attacker has collected matching
auxiliary data and now aims at inferring the corresponding information from
captured audio fingerprints.



– Distinguishing speech. In the first scenario, the adversary wants to distinguish
fingerprints derived from speech from those containing other signals. Since
audio content recognition is often used to identify music tracks, we focus on
distinguishing fingerprints derived from human speech and music, respectively.
As auxiliary data, the attacker has access to a collection of corresponding
audio recordings.

– Identifying speakers. In the second scenario, the attacker is interested in iden-
tifying the speaker of a voice signal that is captured by an audio fingerprint.
This identification allows them to associate the recorded signal with a specific
person, thus potentially compromising their privacy. As auxiliary data, we
assume a dataset containing audio recordings of the targeted speaker and
other voices.

– Recognizing words. Finally, the attacker tries to reconstruct parts of the
spoken content from the fingerprints. If successful, the attacker can retrieve
different sensitive information. We restrict our attack to identifying the
English digits zero to nine, which already poses a privacy risk when, for
example, a credit card or phone number is spelled. As auxiliary data, we
assume that a dataset with spoken digits is available to the attacker.

Although we examine each of these attack scenarios individually, they can be
chained together to generate a more powerful attack. Further, it is possible to add
other recognition tasks, such as identifying ambient sounds or other spoken words,
to strengthen our attack. We thus consider the three scenarios as prototypical
for a group of recognition tasks that are applicable to audio fingerprints.

4.3 Attack Method

As the captured fingerprints contain only a fraction of the information of the
original signal, the attacker needs to carefully engineer an attack method to
reconstruct the information they are interested in. This method comprises three
steps, which we discuss in the following.

Fingerprint Generation. As the first step, the attacker needs to generate a
representative set of fingerprints based on the auxiliary data (see Section 4.1).
This set serves as training data and enables machine-learning methods to infer
a recognition model from the contained frequency peaks and their temporal
relation. This fingerprint generation, however, depends on whether the adversary
has white-box or black-box access to the underlying algorithms.

From the three considered ACR solutions, we only have full access to the
QBF method and thus simply implement the fingerprinting algorithm described
in the original publication [40]. We only make slight adaption to the algorithm’s
parameters, such that it can handle short audio snippets of less than a second,
which the original configuration cannot. Unfortunately, we cannot simply imple-
ment the audio fingerprinting algorithms of the other two solutions, as they are
closed-source software.



To tackle this problem, we reverse engineer the relevant parts of the SDKs of
the two solutions. We first perform a static analysis of popular apps56 containing
the SDKs. This is done to identify the respective methods for generating audio
fingerprints along with the used parameters. Using the determined parameters,
we use the analysis toolkit Frida [34] to dynamically instrument the apps’ code
and generate fingerprints within the apps, enabling us to obtain the exact same
fingerprints as sent to the companies’ backends. That is, we provide the methods
prepared audio buffers and intercept the returned audio fingerprint data.

For Zapr, we find that it implements five different fingerprinting methods.
As the manual effort to reverse engineer all of them is too high, we decide to
select two of them for further examination. In the following, we refer to them as
Zapr Alg1 and Zapr Alg2. As the first algorithm, we select Zapr Alg1, since its
reverse-engineered interface exhibits similarities to the only publicly available
description provided by the company [22]. Moreover, we select Zapr Alg2, which
appears to be the default algorithm at the time of our analysis.

Model Architecture. Once representative fingerprints have been generated, and the
corresponding byte sequences are available, we can finally use machine learning
for inferring recognition models. Due to the sequential nature of our dataset we
base our models on the transformer architecture [46]. Since we want to solve a
classification task, we only utilize the encoder part of the transformer architecture,
which has shown promising results in other problem domains (e.g., [11,13]).

In detail, the model receives fingerprints as input. Each input fingerprint f is
a sequence of subfingerprints f1, . . . , fk, where each subfingerprint is l bits long.
The sequence length k and the number of bits l are specific to the concrete ACR
solution or classification task. Fingerprints containing fewer than k subfingerprints
are padded with all-zero subfingerprints until they reach the sequence length of k.
First, each subfingerprint is mapped to a d-dimensional embedding vector, which
also encodes information about the subfingerprint’s position within the sequence.
The embedded subfingerprints are then processed by successive encoder blocks
that allow capturing the context within a sequence of audio fingerprints. After
the encoder blocks, the sequential output is condensed using the attention-based
pooling mechanism SeqPool [16], and then mapped to an n-dimensional vector.
The resulting vector contains the logits for the corresponding classification task,
where n is the number of classes (e.g., the number of words or speakers).

Model Training. We peform a hyperparameter selection and train a distinct
model for each of the attack scenarios and each ACR solution. All models follow
the architecture described above. However, we vary the embedding dimension d,
the number of encoder blocks, and the number of attention heads. Throughout
the experiments, we use a fixed number of bits l for most of the considered ACR
solutions. Only for Zapr Alg2, we vary this parameter, as the exact length of
the subfingerprints is unknown for this solution. An overview of the selected
hyperparameters can be found in Table 2 in the Appendix.
5 sha1: 3c0770204a5d769c1a22a4acb7f9d6a4dd12e55c
6 sha1: 5de8eb4098d2e35a2c3951a169bf9e19a680e2d4



We train each model for 300 epochs using the weighted Adam optimizer,
combined with a learning rate schedule based on cosine decay [27,28]. To avoid
overfitting of our model, we apply three common regularization methods. In
particular, we combine dropout [41], stochastic depth regularization [17], and
label smoothing [42] during training.

Note that we make our code and the used datasets publicly available7 to
allow other researchers to reproduce the results, and access details on our feature
extraction and model selection procedure.

5 Evaluation

We proceed to investigate the impact of the proposed attacks on the privacy of
smartphone users. Following the three attack scenarios, we empirically evaluate
whether an adversary can identify human speech, particular speakers, or spoken
words in the content of the collected audio fingerprints.

5.1 Speech vs. Music

To run a successful attack, an attacker first needs to be able to filter out potentially
interesting audio fingerprints that contain human speech. That is, the attacker
wants to solve a binary classification problem, in which the learning model receives
an audio fingerprint as input and predicts one of two possible classes.

Dataset. For this experiment, we combine audio samples of human speech from
the popular LibriSpeech dataset [32] with music examples taken from the free
music archive (FMA) dataset [10]. In particular, we randomly select the same
number of samples from each of the datasets and split them into audio recordings
with a duration of 3 seconds each. This is done to ensure that all audio samples
in our dataset have a fixed length, so that the machine learning model cannot
implicitly use the length of a sample as a shortcut for its decision [3]. We then
employ the audio fingerprinting algorithms of the selected ACR solutions on
these recordings. As all algorithms expect audio signals sampled at 8,000 Hz, we
resample the files in the dataset accordingly. Our final dataset comprises a total
of 61,624 audio recordings and respective fingerprints.

Experimental Setup. To avoid overfitting the neural network, we split the data
into separate training, validation, and test partitions. That is, we use 35,512
samples for training, 10,112 samples for validation, and 16,000 samples for testing.
Note that we ensure that no audio recording used for obtaining the samples in
one partition is used in another. We then determine the best setup for our attack
on the validation data, where we vary the hyperparameters (see Section 4.3). We
finally measure the performance of the best setup on the test set.

7 https://github.com/acr-privacy/attacks



Table 1: Overview of experimental results. For each setting, the table shows the Accuracy
(Acc), Precision (P), Recall (R), and F1-Score (F1). The last row shows the results of a
random guess by the attacker (RND).

Speech Speaker Word

Acc P R F1 Acc P R F1 Acc P R F1

QBF .97 .97 .97 .97 .90 .90 .90 .91 .70 .70 .70 .70
ACR .98 .98 .98 .98 .90 .90 .90 .91 .82 .82 .82 .82
ZA1 .95 .95 .95 .95 .64 .64 .64 .64 .58 .58 .58 .59
ZA2 .68 .68 .68 .68 .05 .03 .05 .03 .40 .40 .40 .40
RND .50 .50 .50 .50 .03 .03 .03 .03 .10 .10 .10 .10

Results. Table 1 shows the results of this experiment. The attack achieves the
highest success rates using the fingerprints of ACRCloud, with an accuracy of
98%. The results for QBF and Zapr Alg1 are only slightly worse, yielding reliable
detection rates of 97% and 95%, respectively. While the attack is less effective
against Zapr Alg2, we can yet classify 67% of the samples correctly—which still
exceeds random guessing.

Overall, our results show that audio fingerprints contain enough information
to reliably distinguish between music and speech signals. This result is not
unexpected, as the attack scenario is close to the original purpose of ACR
solutions. Nevertheless, our attack can serve as a preparatory step for further
analysis and inference of other relevant information.

5.2 Speaker Identification

For the next experiment, we assume that the attacker was able to obtain finger-
prints that solely contain human speech. They now want to identify the speakers
that were recorded by the mobile device. To mimic this scenario, we design an
experiment with n speakers. That is, the attacker tries to distinguish between n
distinct classes from the audio fingerprints. In this setting, the final layer consists
of n output neurons, where each neuron corresponds to one of the speakers.

Dataset. To evaluate the attack in this setting, we use the LibriSpeech dataset [32].
We randomly select audio recordings of 2 × 40 distinct speakers from the Lib-
riSpeech dataset. Like in the previous experiments, we resample the audio files
at 8,000 Hz and split them into chunks of three seconds, which are then used to
generate the audio fingerprints. The resulting dataset contains 33,920 samples,
with at least 400 instances per speaker.

Experimental Setup. We first split the LibriSpeech data into a calibration set and
an evaluation set, each comprising 40 different speakers, and containing 16,720
and 17,200 audio samples, respectively. This split ensures that we do not overfit
to peculiarities of some of the speakers. We then perform experiments on the



calibration set to select hyperparameters according to Section 4.3. Finally, we
select the best attack setup and run the final experiment on the evaluation set.

Results. For QBF and ACRCloud, we receive a high accuracy of up to 90% (see
Table 1). The attack success rate outperforms random guessing by large extent:
As we deal with a 40-class problem, a random prediction only yields 2.5%. Only
for Zapr Alg2, we obtain results close to random guessing. In contrast, however,
we find that Zapr Alg1 is also prone to this attack, with an accuracy of 64%,
proving that the attacked fingerprints still leak sensitive information.

In summary, we show with this experiment that audio fingerprints reveal
enough information to identify individual speakers, which can be sensitive infor-
mation in many cases. The attack fails on one algorithm only, i.e., Zapr Alg2.
While at first glance this result suggests a higher robustness of Zapr Alg2, it
should be interpreted with great caution due to our limited knowledge of the
fingerprint structure. An attacker with greater knowledge of the internals of the
fingerprinting algorithm might be able to also run a successful attack against
these fingerprints as well.

5.3 Word Identification

In the third attack scenario, we also assume that the adversary has obtained audio
fingerprints that contain human speech. However, unlike the previous experiment,
the attacker is now interested in the spoken content stored in these fingerprints.
To simulate this situation, we design an experiment where each audio fingerprint
contains one of n spoken words. Here, we choose the English digits from zero
to nine as the basis for these words, such that n = 10. The final layer of the
neural network contains 10 neurons, where each output neuron represents one
of the digits. While more complex attack scenarios are conceivable, even the
identification of a limited set of words like digits poses a privacy problem, for
example, when a PIN or credit card number is spelled out loud.

Dataset. For this experiment, we use the Speech Commands dataset [49] and
extract all audio of spoken digits. The dataset already contains a prepared split
into training and testing partitions. Therefore, we use this partitioning instead
of generating our own. However, we prepare the training data by removing
duplicates that would simplify the attack. Also, we balance the number of audio
snippets per digit. Our final dataset includes a total of 36,462 audio samples,
where 32,630 are used for training and 3,832 for testing.

Experimental Setup. We follow the same experimental procedure as described in
Section 5.1, and select the setup that yields the best results on the validation data.
The selected parameters are described in the Appendix (see Table 2). Finally,
we evaluate its performance on the test set. In this case, however, the test set is
not entirely balanced. Some digits occur slightly less frequently than others. To
ensure a fair comparison, we macro-average the results to ensure that each digit
is weighted equally.



Results. Table 1 shows the results of this experiment. In contrast to the identifi-
cation of speakers, all considered solutions are vulnerable to this attack, although
not to the same extent. In particular, we obtain the best results for ACRCloud
with an accuracy of 82%, followed by QBF and Zapr Alg1 with 70% and 58%,
respectively. To our surprise, the attack is also successful against Zapr Alg2 in
40% of the cases, where the identification of individual speakers failed. While
the algorithm shows the highest robustness, the success of the attacker is still
significantly higher than random guessing, which only yields 10% accuracy in
this setting. Although our experiment builds on a simplified setup with a lim-
ited number of words, it is clear that spoken content can be identified in audio
fingerprints, raising doubts about their privacy-friendliness. We suspect that
similar attacks can be conducted with personal names, street addresses, and
other sensitive terms that would compromise the privacy of smartphone users.

6 Discussion

Our experimental results in the previous sections show that audio fingerprints
can indeed leak sensitive user information that might be misused by malicious
parties. In the following, we sketch three possible countermeasures of increasing
technical complexity to respond to this threat. Furthermore, we elaborate on
limitations and possible biases in our experimental design.

Countermeasures. The first and simplest countermeasure is to notify users
properly if the device is recording audio in the background. For instance, recent
versions of mobile operating systems display an indicator on the device signaling
an ongoing recording. While this approach should lower the risk that fingerprint
generation takes place without the user’s knowledge, it might be overlooked easily.
An additional problem arises from the fact that most Android devices still run
with Android 10 or lower and thus do not notify the users when the microphone
is used in the background. Consequently, we argue that audio content recognition
should only be performed at the user’s request.

Secondly, cryptographic hashing can help to protect the sensitive data stored
in the fingerprints. In particular, applying a cryptographic hash on the subfinger-
prints still allows matching them, while hindering the dissection and statistical
analysis of the contained frequency peaks and temporal differences. However, to
rule out dictionary attacks, the entropy of the fingerprint distribution has to be
high enough. Further, a keyed hash function with a periodic key rotation should
be used (see [21]). While the former remains questionable, the latter is ruled out
by the business models in the ACR context.

Finally, we note the similarities between the technique of private set intersec-
tion (PSI) and the matching subfingerprints against a database. PSI enables two
parties to generate an intersection of private sets without revealing the elements
not in common. Several PSI approaches consider scenarios where a small set is
intersected with a large set (e.g., [12,7]), thus reflecting the matching process in
ACR solutions. Utilizing PSI, the service provider only learns of subfingerprints



present in her database, thus reducing the information available to the attacker.
This results in a reduced attack effectiveness, as matching specific samples needs
preparation in advance. PSI, however, incures a notable overhead. While this may
be acceptable for applications with sporadic ACR usage, such as music recogni-
tion, this renders continuous tracking infeasible. As with cryptographic hashing,
if the fingerprint distribution is of insufficient entropy, creating a dictionary and
matching it against the incoming fingerprints remains possible.

Limitations. Although we have designed our experiments with great care, we
could not show the leakage of sensitive data in all examined cases. Unfortunately,
this does not automatically imply a proper protection of sensitive data by the
ACR solutions in these cases. Instead, we faced several limitations that might
have affected our experimental outcome, hindering us to extract the sensitive
information reliably.

First of all, our experimental setting is not free from bias, as we perform our
experiments under controlled conditions on mostly balanced datasets. However,
as we intend to demonstrate possible privacy threats of ACR solutions in this
paper, we argue that our setup is still appropriate for this purpose. Still, further
research is required to better assess and grasp the exact impact of our findings
and develop effective defenses against this privacy threat. On one hand, we
have not systematically assessed the robustness of the attacks in the presence
of background noise, which could potentially even serve as a simple defense
mechanism. Overall, more advanced attacks against ACR fingerprints along with
corresponding defenses should be explored in the future.

Secondly, we find that the examined ACR solutions are not vulnerable to
the same extent. Most notably, we could not show that distinguishing between
multiple speakers is possible when generating fingerprints with the Zapr Alg2
algorithm. However, we note that we have not been able to fully reverse engineer
and understand the internals of this particular solution. Hence, even attacks on
this algorithm might still be possible, given an adversary with enough background
knowledge of the underlying algorithms.

Finally, in this paper, we consider the application of ACR in mobile apps
only. However, as these solutions are part of a broad ecosystem that is difficult
for externals to grasp, they are deployed in many different application scenarios
as well [53,47,15,40,1]. A complete survey of this ecosystem is thus out of scope.
Nonetheless, we think that our gained insights generalize to other ACR solutions,
as we have selected two popular examples that are widespread and offer services
and SDKs not limited to a specific app or use case. Still, further research is
required to assess the security of other ACR methods as well.

7 Conclusion

In this work, we provide insights into the ACR ecosystem and demonstrate that
the employed audio fingerprints reveal private information. The evaluation of
our attacks gives evidence that audio fingerprints leak sensitive information and
should not be used as a privacy protection mechanism.



Within the conducted experiments the proposed attacks identify sensitive
information, achieving high accuracy values that are significantly better than
random guessing. In particular, we can show that it is possible to identify speakers
and spoken words in the audio fingerprints of three major ACR solutions using
machine learning techniques.

These results raise serious privacy concerns, especially if this technology
runs in the background without the users’ knowledge. We conclude that these
approaches are not privacy-friendly and caution should be exercised, especially
when using them for background monitoring.
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A Details on ACR Solutions

In this section, we provide information that we obtained through reverse engi-
neering of the two commercial ACR solutions Zapr and ACRCloud.

Analysis Setup

We start by describing our experimental setup to reverse engineer the apps and
discuss our findings of both solutions afterward.

Mobile Apps. For ACRCloud, we base our analysis on the Deezer app (version
6.1.14.99.) and verify that our insights also remain valid for more recent versions
of the SDK (version 6.2.13.151). Similarly, we use the Android smartphone
application ABP Live TV News (version 9.9.7) for Zapr.

Dynamic Analysis. Both solutions encapsulate the implementations of the ACR
algorithms in a shared library, which is provided as a native binary object and
accessed by the Android apps through the Java Native Interface (JNI). We treat
the fingerprinting algorithms inside the shared object as a black box and observe
its return values. To this end, we use the dynamic instrumentation toolkit Frida,
which allows us to run the fingerprinting algorithms on controlled input signals,
and extract the resulting audio fingerprints. A static analysis shows that all
algorithms expect the input signal to be sampled at a frequency of 8,000 Hz with
an audio bit depth of 16 bit. Providing the ACR implementations with properly
preprocessed audio samples yields the required audio fingerprints, which can then
be utilized for further analysis.

To learn more about the underlying structure of the fingerprints, we perform
controlled experiments using specifically crafted audio signals from which we
derive audio fingerprints. For instance, we use audio signals that contain only
one particular frequency or even pure silence.
8 Zapr discontinued its service in mid 2022. Thus, we can only provide a link to the

snapshot of the website.
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Table 2: Overview of final model parameters. The table shows the number of bits of the
subfingerprints (l), sequence length (k), the embedding size (d), the number of encoder
blocks (encoders), and the number of heads per encoder (heads) for each setting.

Experiment Fingerprint l k d encoders heads

Speech vs. Music QBF 19 177 128 4 4
ACRCloud 64 96 128 4 4
Zapr Alg1 32 80 128 4 4
Zapr Alg2 8 804 128 4 4

Speaker Identification QBF 19 118 128 4 4
ACRCloud 64 95 128 4 4
Zapr Alg1 32 80 128 4 4
Zapr Alg2 16 314 128 4 4

Word Identification QBF 19 48 128 4 4
ACRCloud 64 24 128 4 4
Zapr Alg1 32 20 128 4 4
Zapr Alg2 32 92 128 4 4

Fingerprint Structures

We find that the fingerprint structures do not only widely differ between ACR-
Cloud and Zapr, but even between the two Zapr algorithms we selected for our
analysis. In the following, we provide more details on our findings.

ACRCloud. For ACRCloud, we find that the generated audio fingerprints vary
in length, although all audio snippets are three seconds long. In particular, the
length of the generated fingerprints for our dataset varies between 344 and
752 bytes, with a median at 544 bytes. Each fingerprint consists of multiple
subfingerprints (see Section 3.2) with a length of 8 bytes. The first two bytes of
each subfingerprint encode the frequency of an identified peak. Here, ACRCloud
seemingly segments the frequency band, which has a maximum frequency of
4,000 Hz, into 1024 distinct bins of equal size, leading to a frequency resolution
of fres = 4000 Hz

1024 ≈ 3.906 Hz. The third and fourth byte of the subfingerprints
encode the time offset ∆t with a granularity of roughly 20 ms. For the last
four bytes, we are unable to derive clear explanations. But we notice that the
information stored in these bytes depend on the frequency bytes but not on the
time offset.

Zapr. For Zapr Alg1, none of the observed fingerprints exceeds 340 bytes in
length, which suggests a maximum length for the fingerprints. Additionally, each
fingerprint’s length is divisible by 4 bytes, indicating that they are composed of
multiple subfingerprints, each 4 bytes long. The only exception we find is for silent
signals, for which the algorithm does not output any fingerprints. The first two
bytes of a fingerprint encode the time offset with a precision of 2 seconds. The last
byte encodes frequency information, systematically partitioning the 4 kHz-band
into 256 distinct frequency bins. The purpose of the third byte remains unclear.
Unfortunately, for Zapr Alg2, we have not been able to derive information about
its structure.
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